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1 Data

1.1 To do list

Things I still have to do for these notes.
First priority:

• Graph partitioning, clustering, and spectral graph methods

• Integer polyhedra, TDI systems and compuing integer hulls via Pfaffenhofer

• Disjunctive programming Balas

• MINLP (thesis)

• Tree decompositions, packing covering, chapters 19 to 20 of Graph Theory by Bondy Murty

• Group testing and compressed sensing (in math-bio folder)

• Matroid EA (EvolAlgo) methods from Skutella paper

• Enumeration algo papers

• Min cost flows in Hypergraphs and hypergraph-simplex algo, Hypergraph min cuts, Hypergraph
coloring and connectivity, Hypergraphs in Schrijvers encyclopedia.

• Barahona cut polytope paper (plus chap on "Geometry of cuts and metrics")

• Cominatorics and machine learning and data science (TDA, "CombiDataScience", CDA)

• Discrete geometry in ML ("DG_ML", "VCdim_polytopes", "ml_polytopes" in AI folder)

• Frugal algorithms from thesis Sahil

• "Supply-Chain Optimization" by Veinott

• "Introduction to combinatorial designs" by Wallis

• GeometricProgramming

• OptiGroups

• QuadFlows

• CombiOptUncertainty

• AlgotithmicCombinatorics

• ConvexIntersection

• ConvexPacking

• p-adicNewton (and other computational algebra methods)

• EigenvalueAlgo

• Graph_Sparsification

• "Non-sep-non-disc-path" for non separating, non disconnecting paths
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• Gradient descent material (relation to dynamics and geometry: "GradDesc..." in folder), including
"ConditionalGradients" monograph

• Projected Newton and homotopy methods ("ProjNewton...")

• Computational geometry chapter (Convex hulls, triangulations (book chap 1 to 4 and 8), Square
packing papers, "DiscreteCompGeo_skeletons", "Knots_NPcomplete")

• Algorithms in structural biology

• Distance geometry and molecular models, also "DistGeo_DataAna" in DG folder

• Monte-Carlo methods for optimization (CRC book for data science)

• Infinite dimensional linear programming (Barvinok chap 4.3, 4.4, 4.6, 4.7, 4.12)

• Perfect matching via polynomial identity ( "PerfectMatch-SchwarzZippel")

• Held-Karp for TSP, including the paper with constraint programming improvement

• Numercal LA: Conjugate gradient descent (Shevchuck paper); Power method for largest eigenvalues,
Gaussian reduction (quadratic, "ReductionGauss" in folder)

• Numerical methods for ODE and PDE: Runge-Kutta and FEM, as well as connection of gradient
flows to optimization

• Optimal control (Evans notes and Numerical methods book)

• Calculus of variation (Kot)

• Numerical methods for optimal control: "OptControl_IntPtsMethod"

• "Algebraic Stats for Comp Bio", more on phylogeny and strings

• Machine learning chapter (MSPs via Reinforcment learning book by greek guy and japanese guy;
Neural network books Springer (Calin O., Rojas ?), chapter in data science book by CRC; HMMs
via script and chapters of "Algebraic Stats for Comp Bio", Hypergraph Neural Nets; Grosse lectures;
Geometric Learning "GeometricLearnin-1" ; Machine Learning by Venkatesh ; "Complexity_NN";
GNN stuff; "NN_Topology"; "NN_Algebra"; "NN_NAS_MaxFlow")

• Interactions of statistical physics and combinatorics ("StatMecha..." in combinatorics folder, Perkins)

• Combinatorial statistics

• Interactions between combinatorics and numerics ("CombiNum...")

• MechaDesign and DistribComputing lectures, and Roughgardens AGT notes, and Votingalgo and
MultiagentSystems notes, Ulam Game, parity game, reachability switching games, diffusion games,
"VotingBribing", Computational social choice (survey), shelling games, financial network games,
domination games, maker-breaker, pursuit-evasion, fair division, ...

• Differential game theory

• "FeatureRanking_wGameTheo" in AI folder

• Graph mining stuff in AI folder (including links to combinatorial optiization)

• Topological Data Analysis and HodgeRank (AI folder, "TDA...", "Ranking_CombiHodge" and
"CombinatorialHodgeTheory")
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• Convex relaxation for non-convex problems ("ConvRelax..." in DOpt folder)

• Non-convex optimizatiom (NonConvexOpt)

• Optimization on manifolds (OptiManifolds)

• Matroids: Hungarian Algo intersection (Papadimitriou), "FastMatroidInersection"

• Microeconomics of game theory chapter from Reny

• ParetoFront papers (maximal vectors), also "ParetoSets"

• Art gallery problems ("Art Gallery Full Book")

• Combinatorial optimization for geometry "CombiOpt-Geometry"

• Evolutionary algorithms (AI folder, files EA...)

• Particle swarm optimization ("PSO..." has a run-time analysis) and neural computing ("Neural-
Comp..." ML for AI and more)

• Multi-criterion optimization (MOCO mst and slides)

• Inverse Problems

• Information theory (entropy chapter of extremal combinatorics book; Berkley lecture ("B_info...);
books)

• Discrete differential geometry, in particular discrete minimal surfaces

• Symbolic integration

• Interpolation: Multivariate in Zippels book, "Approximation theory" books

• Reed Solomon codes and coding theory in general (Algebra)

• "BooleanAnalysis" paper with a proof of Arrow’s theorem using Boolean Fourier, and all of O’Donells
book "BooleanFunction..." in combinatorics folder

• Application of combi opt to bio (Gusfield book "OptLabBio...")

• AKS primality testing algorithm via the finite field AMS book

• Algorithms in Galois theory ("Algo_Galois")

• Fill out stuff left half done, fix errors

Second priority:

• Global minimum cut and Gomory Hu trees

• Simplex chapter (plus low dim LP (comp geo book), Klee-Minty, Sensitivity, active set algo, Ran-
domized simplex algorithm from Kalai Paper)

• Quadratic and sequential quadratic programming (degeneracy, and paper on SQP and opt control,
or other papers on the topic cause the ones I have are trash)

• Cycle Structure and feedback sets from the Digraph book

• Exact solution from interior point methods "Exact_IntPtLPsolver"
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• Finish Rothvoss: integer conic programming and discrepancy theory

• CP linearisation, proximal algorithms

• Online algorithms
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1.2 Books to read

Things I still have to read.
Sorted by priority:

• Wasserman’s notes on statistical learning, in particular random forests, optimal transport, etc.

• Algorithmic toolbox by Roughgarden and Valiant

• the ML notes and graphical models notes

• the algorithmic game theory notes by roughgarden

• "MarkovSamplingHMM" for Monte Carlo and hidden Markov models, among other

• "NUMERICAL LINEAR ALGEBRA" by Rannacher

• "Numerical Optimization" by Wright and Nocedal

• "Numerical Optimization" by Bonnans, Gilbert, Lemaréchal and Sagastizábal

• "Linear and nonlinear inverse problems with practical application" by Müller and Siltanen

• "Inverse Problems and Data Assimilation" by Sanz-Alonso, Stuart and Taeb

• "Data Science and Machine Learning" by Kroese, Botev, Taimre and Vaisman

• "Geometry of cuts and metrics" by Deza and Laurent

• "Gems in combinatorial optimization"

• Williamsons lectures on mathematical programming

• "Digraphs Theory, Algorithms and Applications" by Bang-Jensen and Gutin

• "Algebraic Methods for Dynamical Systems and Optimisation" by Kaihnsa (stored as AlgOptBio)

• "Combinatorics on words" by Heubach and Mansour

• "Computational complexity of counting and sampling" by Miklos

• "Chemical graph theory" Wagner and Wang

• "Combinatorial scientific computing" by Naumann and Schenk

• "Exponential time algorithms for graph coloring" unknown, named "ColoringAlgo"

• "Local search in combinatorial optimization" Aarts and Lenstra

• "Randomized algorithms" by Motwani, Raghavan

• "Planning algorithms" LaValle

• "Triangulations..." book by Loerna and Rambau

• "Triangulations" notes on mesh generation by Shewchuk

• One of the discrete differential geometry notes and the discrete minimum spanning surfaces notes

• "Dynamic Programming" by Sniedovich

• "Combinatorial optimization" by Jungnickel
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1.3 Sources and reading recommendations:

Things I read (partially) and worked with to make these notes, with some mini-reviews.

• "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein: is mostly about combinatorial
and graph algorithms and data structures, but also introduces other topics such as the FFT and
computational geometry. It’s motivated, rigorous, not too applied, and has nice doable but unsolved
exercises.

• "Algorithm design" by Kleinberg and Tardos: is mostly about combinatorial and graph algorithms.
It’s well motivated, rigorous, shows some applications, and has a few doable and solved exercises, as
well as nice hard unsolved ones. One of my favorite algorithm books.

• "Exact Exponential Algorithms" by Fomin and Kratsch: is about exact exponential algorithms. It’s
a bit motivated, mostly rigorous, not applied and has unsolved exercises.

• "The Design of Approximation Algorithms" by Williamson and Shmoys: is about approximation
algorithms. It’s motivated, rigorous, not applied, and has nice hard unsolved exercises.

• "Combinatorial Optimization: Algorithms and Complexity" by Papadimitriou and Steiglitz: is about
optimization on graphs, linear and integer programming, as well as complexity theory. It’s a bit
motivated, mostly rigorous, not applied, and has nice hard unsolved exercises.

• "A course in convexity" by Barvinok: is about convexity, with a focus on geometry (polyhedra
and ellipsoids) and combinatorics (discete geometry and Erhart theory) but is till of interest for
optimization, as it tackles linear programming and the ellipsoid method. It’s a bit motivated, has
nice figures and examples, is rigorous, has some applications, and has nice doable unsolved exercises
incorporated to the lecture material. One of my favorite discrete geometry books.

• "Combinatorial optimization: Networks and Matroids" by Lawler: is about shortest paths, network
flows, matchings and lots of algorithmic topics on matroids. It’s a bit motivated, mostly rigorous,
not applied, and has unsolved exercises I didn’t look at yet.

• "Combinatorial optimization: Theory and Algorithms" by Korte and Vygen: is about combinatorial
optimization, LPs, IPs, and has lots of advanced topics such as semidefinite programming and multi-
commodity flows. It’s a not motivated, skips a lot of arguments, not applied, and has hard unsolved
exercises. Makes for a good reference, but don’t try to learn with it.

• "A first course in the calculus of variations" by Kot: is about the calculus of variations. It’s moti-
vated, mostly rigorous, has many applications, and has nice doable unsolved exercises.

• "Discrete and computational geometry" by Devadoss and O’Rourke: is about computational geome-
try with some aspects of discrete geometry (for example on triangulations). It is motivated, rigorous,
has beautiful figures and some applications, and nice doable unsolved exercises. Makes for a good
introduction. One of my favorite computational geometry books.

• "Lectures on Polytopes" by Ziegler: is about combinatorial aspects of polytopes, but contains some
content linear-algebra aspects of them, as well as some content on oriented matroids. It’s sometimes
motivated, rigorous but skips way to much, not applied and has hard unsolved exercises.

• "Convex Optimization" by Boyd and Vandenberghe: is about convex analysis and optimization (in
finite dimensional space) with algorithms. It’s motivated, kind of rigorous, has many applications,
and has unsolved exercises I didn’t look at yet.
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• "Discrete Mathematics" by Aigner: is about combinatorics, graphs and number theory but contains
a chapter on linear programming. It’s sometimes motivated, rigorous, not applied, and has nice
solved exercises.

• "Advanced microeconomic theory" by Reny and Jehle: is about microeconomics, convex analysis
and optimization and game theory. It is more mathematical then some math books. It’s not very
motivated, rigorous, has some applications, and exercise with hints/solutions.

• "Algorithmic Game theory" by Nisan, Tardos, Roughgarden, Vazirani: is about game theory and
mechanism design, from an algorithmic viewpoint. It’s not very motivated, not very rigorous, has
some applications and unsolved exercises I didn’t look at yet.

• "Polyhedral Geometry and Linear Optimization" and "Lecture Notes on Lattice Polytopes" by Paf-
fenholz (free lecture notes available online) are about polyhedra, lattices, and optimization and some
combinatorics regarding them. They’re not too motivated but have nice figures and a clear approach,
rigorous, not applied, and have no exercises.

• "Geometric Algorithms and Combinatorial Optimization" by Grötschel, Lovasz and Schrijver is
mostly about the ellipsoid method and it’s use in combinatorial optimization. It’s not too moti-
vated, rigorous, not applied and has no exercises.

• "Integer Optimization and Lattices" by Rothvoss (free lecture notes available online) is about lattice
geometric methods for solving IPs. It’s a bit motivated, rigorous, not applied and has unsolved
exercises I didn’t get to look at yet.

• "Game theory: a playful introduction" by Devos and Kent is about (classic) game theory. It’s
motivated, rigorous, not applied and has unsolved exercises I didn’t get to look at yet. One of my
favorite game theory books.

• "Introduction to linear optimization" by Tsitsiklis and Bertsimas is about linear and integer-linear
programming, with content on interior point and ellipsoid methods. It’s motivated, rigorous, not
applied and has unsolved exercises I didn’t get to look at yet. One of my favorite linear programming
books.

• "Linear programming" by Chvátal is about linear programming. It’s motivated, rigorous, not applied
and has exercises which a partially solved with undetailed solutions.
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2 Combinatorial algorithms and optimization

2.1 Shortest Paths

"Combi opt" Lawler: ch 3 sec 13

Recursion: Floyd-Warshall
We’re interested in how a navigation device finds the shortest path from a starting point to a destination
in a road network. To study this, we model the road network by a weighted directed graph G with edge-
weight function w: the vertices represent intersections, the graph is directed as roads my only be driven
in one direction and the weights represent travel distance or travel duration between intersections.

We which to find an algorithm that determines a path P from vertex i to vertex j that minimises the total
weight

∑
e∈EP

w(e) of all such paths.

Technically, we should ask for a walk instead of a path. In our context however, we assume that w is
positive, so that eliminating the cycles in a walk yields a path of lesser weight then the walk: therefore,
there is a minimum walk that is a path, so we keep the problem constrained to paths.
Positivity of weights also guarantees that a minimum walk exists! Without it, the graph may contain a
cycle of negative weight. If a walk contains such a negative cycle, we can extend the walk by repeatedly
cycle around it, getting paths of successively lower weight: in such a case, a minimum walk doesn’t exist.

We now investigate a recursive approach to the problem. There are two variations of such an approach:
either we consider recursion on the edges, or on the vertices. In both cases, we should try to see if one can
recover a shortest i-j-path from the same knowledge, but on the graph with an edge or a vertex removed.
Here, we’ll study the recursion over the vertices.

Assume, we know how to find shortest u-v-paths in the graph G\x for some vertex x ∈ G: how can
we find the shortest u-v-paths in G ?
In G, a u-v-path either passes through x or it doesn’t. By recursion, we can assume that we know the
shortest path of the second kind. To relate those of first kind to our knowledge from recursion, we split
such a path P into two paths by cutting at x: if a and b are the predecessor and the successors to x on
P , we obtain Pu→a and Pb→v, two paths of G\x.
We also split the weight of P into

∑
Pu→a

w(e) +w(a, x) +w(x, b) +
∑
Pb→v

w(e). By recursion, we can assume

that we know minimal u-a-paths and b-v-paths. So all possible candidates for shortest u-v-paths in G are
the minimal paths of their respective category: those that don’t cross x and those that use a minimal path
in G\x from u to an a in the in-neighbourhood Nin(x) of x in G, cross x through a→ x→ b and reach v
from b with a minimal path in G\x, for some b in the out-neighbourhood Nout(x) of x in G. So the task
reduces to finding the candidate of minimal weight.

To clean this idea up, we take a bottom-up dynamic programming approach. We’ll label the vertices
in some order, associate to them two types of data and iteratively update this data, iterations correspond-
ing to the addition of vertex k to be considered in the paths, for k climbing [|V |]. The first data associated
to a vertex will be the length of a shortest path from i to j in the sub-graph induced by the vertices i, j
and 1 to k, denoted by dkij (so we iterate over the possible internal vertices of i-j-paths).

We also want to keep track of the paths of minimal weight. One way to do this is by storing the path as
a list/tuple, one for each (i, j). However, there is a much more efficient way of doing this that requires a
little theory:
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Sub-structure optimality of optimal paths:

If a path P minimises (or maximises) a weight
∑
e∈EP

w(e) under the constraint of fixed endpoints,

then its subpaths minimise (or maximises) this weight for fixed endpoints too.

Proof: If a minimal i-j-path P had a u-v-subpath Q that wasn’t a minimal u-v-path, then we could
modify P so as to have less weight, contradicting its minimality. If R was a lighter u-v-path then Q, then
we could build a new i-j-path by following P from i to the first vertex of R on P , then follow R until the
last vertex that R and P have in common, and finish by following P until j. This is a path (not just a
walk), as repetition of vertices would lead to contradictions in our construction. It’s weight is less then
w(P )− w(Q) + w(R) since we never follow Q as the switch to R happens at u and v in an extreme case.
If w(R) < w(Q), this will yield a lighter i-j-path.

By this sub-structure optimality, we only have to keep track of predecessors of vertices on optimal paths.
For example, to find an optimal i-j-path, we would store the predecessor k of j on such a path, because
the subpath from i to k is also optimal, so that if we had already stored this optimal path as a list indexed
by (i, k), then concatenating j to this list yields a vertex-list of an optimal i-j-path.
So our second data will be pkij , the predecessor of vertex j on an optimal i-j-path in the kth iteration.

Summing up:

Floyd-Warshall (assp):

We consider the distance dkij from i to j using the first k vertices.

We update distances with dk+1
ij =

{
wij ,∞, 0 for the start k = 0

min
(
dkij , d

k
i,k+1 + dki,k+1

) (compare current distance to that

when passing the new node k+1). We update for all pairs of vertices for |V | iterations.

Runtime O(V 3)

Ex.kSP: In a digraph with positive edge weights, we seek the k successively shortest paths between
two endpoints, in the sense that the ith path is different from the j < i first ones and has minimum weight
among all paths, other then the j < i first ones. So the some of the paths in this list may have equal
weight (there may be multiple paths of minimum weight), but they are all different. Give an algorithm
that solves the problem with runtime polynomial in the graph size and in the parameter k.

Ex.DMP: We given a connected graph and edge weights w : E → R. For vertices s and t, how do
we find a s-t-path P such that the most expensive edge max(w(P )) is minimum over all such paths ?
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2.2 Spanning trees

Ex.FLST:
(i) For a subset T ⊆ V of the vertices of a graph, is there a polynomial time algorithm for telling if there
is a spanning tree of G in which all vertices of T are leaves ?
(ii) Same question, but for the existence of a tree for which all leaves are in T .

Ex.NT: We wish to find a spanning tree in a connected graph with given edge weights that has the
globally narrowest edges. By "globally narrowest edges", we mean that the spanning tree T minimises
maxe∈T w(e), over all spanning trees. How do we find such a spanning tree ?

Ex.PST: We’re given a connected graph with an (not necessarily proper) edge coloring c : E → [k]
and a preference on the colors: wlog. we prefer k to k−1 and so on. We seek a spanning tree of the graph
such that the number tk of edges with color k is maximum among all spanning trees, and the number tk−1

of edges with color k − 1 is maximum among all spanning trees of the previous kind, and so on until 1.
Find an algorithm that finds such a tree.

MST with degree lower bound:
We seek an MST among a special subset of spanning trees of a connected graph G: for some fixed v ∈ V
and some k ⩽ degG(v), we restrict our attention to trees for which degT (v) ⩾ k, and seek the tree of least
total weight of this kind.

We can switch weights to wλ = w − λχδ(v) for a reduction λ ⩾ 0, which makes edges in δ(v) more
desirable to Kruskal. If for a given λ Kruskal selects q edges of δ(v), then the output tree Tλ has weight
w(Tλ) = wλ(Tλ) + λq. If we denote by Tk the MST among those for which degT (v) ⩾ k, then we have
w(Tk) = wλ(Tk) + λ degTk

(v) ⩾ wλ(Tk) + λk.
Now, if we could find a λ such that for it (and weights wλ) Kruskal selects q = k edges of δ(v), then we’d
have w(Tk) ⩾ wλ(Tk)+λk = w(Tλ) so that this tree Tλ is an MST among those for which degT (v) ⩾ k as
well.

The problem is that its a priori unclear how Kruskal will select edges for a given λ and in particular
how many of δ(v) will be selected. Even if we manage to find a λ such that the cheapest k edges are in
δ(v), it is possible for more egdes of δ(v) to be added later by Kruskal.
The only case in which this is easy is the case k = 1 in which λ = 0 does the job. This is when the
recursion idea may come back into play. If we know a λk and such that a Tλk

outputed by Kruskal (for
a specified tie braking) is an MST among those for which degT (v) ⩾ k, can we find a λk+1 such that the
same thing is true for k + 1 ?
Note that the entry candidates δ(v)\Tλk

each close a unique cycle in Tλk
, on which they have maxi-

mum weight (otherwise, we could delete the maximum weight edge on that cycle and get a tree of lower
weight verifying the degree lower bound). If for each e ∈ δ(v)\Tλk

, we denote by fe an edge not in
δ(v) achieving the maximum over the cycle closed by e, then by increasing λ, it will at some point be
more lucrative to swap out fe for e. More precisely, if Ce is the cycle closed by e then for λ such that
w(e) − λ = w(fe) = max

Ce\δ(v)
w, this is the (critical) case, where we started with w(e) − λk ⩾ w(fe), for

otherwise the swap would have been luctrative at that stage, contradicting that Tλk
was an MST among

those for which degT (v) ⩾ k.

We therefore seek the maximum λ for which w(e)− λ ⩾ w(fe) for all e ∈ δ(v)\Tλk
, knowing λ ⩾ λk. We

denote this value by λk+1. If only one of the inequalities w(e) − λ ⩾ w(fe) is tight at λk+1, say the one
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for e′ we run Kruskal on weights wλk+1
by considering e′ before f(e′), so the same edges of Tλk

are chosen
until e′ is chosen before f(e′), after which no other edges of δ(v) are chosen as for them, w(e)−λ > w(fe),
so that fe is chosen first, preventing e from being chosen. Therefore Kruskal constructs a tree Tλk+1

for
which degTλk+1

(v) = k + 1, which we know to be an MST among those for which degT (v) ⩾ k + 1.
If multiple inequalities of form w(e) − λ ⩾ w(fe) are tight at λk+1, then we chose one to do the same as
before and make sure to consider the f(e′) before e′ for the other tight ones, to make sure the e′ aren’t
added, this time due to tie breaking.

Minimum forest partition:
In this problem, we’re given a graph G = (V,E) and we’re asked to find the smallest k such that E can
be partitioned into at most k subsets Ii, each forming a forest on V . Doing this is always possible, as we
can partition E into singleton partition sets made of single edges, which are forests, so that k ⩽ |E|. So
if we can answer the decision version of the problem, we have to answer it at most |E| times to find the
optimal solution.

We’ll solve this problem by specifying an algorithm of Edmonds for matroid partitioning.
We start by introducing k sets I1, ..., Ik, initially empty, which we’ll fill up until we can either tell that
partitioning is impossible, or until we get the desired output, maintaining the invariant that they are
disjoint forests.
A necessary condition for G to be partitioned into at most k forests is that G has not too many edges.
More specifically, if we consider a partitionable graph and consider set of edges A ⊂ E, then if r(A)
denotes the size of the largest spanning forest of the graph induced by A, since |A| =

∑
i∈[k]

|A∩ Ii| and the

A ∩ Ii are forests (as subsets of acyclic graphs are acyclic) in A, so that by definition |A ∩ Ii| ⩽ r(A), we
have |A| ⩽ k.r(A). We’ll see that our algorithm for constructing such a partition works if the inequality
|A| ⩽ k.r(A) is satisfied for all A ⊂ E, and returns a set violating the inequality otherwise.

At each step of the algorithm, we consider an e ∈ E not assigned to one of the partition sets, so
that x /∈ ∪iI(n)i , where n is the number of iterations performed this far. We then look for an Ii
that still has room to accommodate x, which is a priori the case when |Ii| = r(Ii) < r(E) (where
r(E) = |V | − 1, the size of a spanning tree if G is connected) . Such a partition-set must exist, for
otherwise |E| ⩾ |e ∪i I(n)i | = 1 +

∑
i=k

|Ii| > k.r(E) (assume the contrary and use dijointness), so that E

violates the necessary condition for partition.
If for such an Ii, Ii∪e is acyclic, we can put e in Ii and move on. This might not be the case however. If we
denote by S(F ) the graph of largest size that contains a forest F , which is the union of the graphs induced
by the forests components/trees, then it could be that e ∈ S(Ii). Since |Ii| = r(Ii) < r(E) informed us
that Ii still has room left, we’ll look for a different Ij to accommodate e by looking for their part in S1. We
therefore proceed the same way, but focusing on S1. We look for an Ij ∩S1 (which is a forest as a subset)
that still has room to accommodate x, which is a priori the case when |Ij ∩ S1| = r(Ij ∩ S1) < r(S1).
Again, such a set must exist, for otherwise |S1| ⩾ |e ∪j

(
I
(n)
j ∩ S1

)
| = 1 +

∑
j=k

|Ij ∩ S1| > k.r(S1), so that

S1 violates the necessary condition for partition.

TO CONTINUE (Edmonds papers or p.124 onward of "Combinatorial rigidity")

Minimum diameter spanning tree (MDST) problem:
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Definition:

For a graph G = (V,E) with positive edge weights w : E → R+ and induced distance dG, a di-
ameter is the longest distance between two vertices in G, or a path achieving this distance, depending
on context.

In the minimum diameter spanning tree (MDST) problem, we search a spanning tree of a connected graph
G who’s diameter is smallest among all spanning tree. It’s a minimally connected sub-graph for which the
longest path on it is relatively short.

We’ll try to relate this problem to shortest path trees, as we know how to compute those. the connection
is made with more attributes:

Definition:

For a graph G = (V,E) with positive edge weights w : E → R+ and induced distance dG, the
eccentricity of a vertex v is is the longest distance in G from v to any other vertex, or a path achieving
this distance, depending on context. A vertex of a graph is a center of the graph if it has minimum
eccentricity among all vertices.

Intuitively, a center should be at the middle of a diameter, which should be double the radius. We can
solve the ASSP problem to compute the diameters, the eccentricity of each vertex, and from those the
centers of the graph. Intuition tells us that on a MDST, the center should be close to all vertices, so that
the paths from the center to the vertices should be shortest paths.

We’ll try to find a tree with this structure by investigating the properties of a MDST. We consider a
MDST T of G and one of its diameters D (of T ) and look at the middle of this path, in the sense that
we consider u1 and u2 so that if D : d1 → d2 → ... → dn, then (u1, u2) = (dk, dk+1) for the first k

such that w(D|d1→dk+1
) ⩾

w(D)

2
=
diam(T )

2
(which exists as (w(D|d1→dk+1

))k is increasing from 0 to

w(D)). Note that then w(D|d1→u1) ⩽
diam(T )

2
(minimality of k) and also w(D|u2→dn) ⩽

diam(T )

2
, as

w(D|u2→dn) = w(D)− w(D|d1→dk+1
).

The graph T\(u1, u2) splits into two trees T1 and T2, so that ui ∈ Ti.

We now build SPTs T ′
1 the subgraph of G induced by vertices V (T1) and T ′

2 on vertices V (T2) and
consider the tree X = T ′

1 ∪ (u1, u2) ∪ T ′
2. This is a tree as (u1, u2) closes no cycles. How does it’s diameter

compare to that of T ?
If the path P achieves diam(X), then by denoting its endpoints by a and b, we disjoint cases on
whether the endpoints are in different splits of the tree. If a, b ∈ Ti, then all of P is contained in Ti
and diam(X) = dTi(a, b) ⩽ diam(Ti) ⩽ diam(T ). This last inequality is not obvious, even if Ti is a
subgraph of T : for G = Kn and w = 1, we have diam(G) = 1 but for all spanning trees T of G,
diam(T ) ⩾ 2, as there is at least one triplet of vertices with only two edges among them. However, we
have dTi(a, b) ⩽ dTi(a, ui) + dTi(ui, b) ⩽ 2w(D|d1→u1) ⩽ diam(T ), by choice of (u1, u2) and the fact that
for all a ∈ T1 (and b ∈ T2) we have w(P |a→u1) ⩽ w(D|d1→u1) (and w(P |u2→b) ⩽ w(D|u2→dn)).
Indeed, if w(P |a→u1) > w(D|d1→u1), the the path P |a→u1 ∪ (u1, u2) ∪D|u2→dn would be a shortest path
in T (as all paths from a to dn must use (u1, u2)) with greater length then its diameter, a contradiction.
If we have a ∈ T1 and b ∈ T2, then P must use (u1, u2), and P |a→u1 and P |u2→b achieve dT (a, u1) and
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dT (u2, b) respectively (sub-path optimality).
So in this case too, diam(X) = w(P |a→u1) + w(u1, u2) + w(P |u2→b) ⩽ w(D) = diam(T ), with the same
bound as previously.
Finally, since T is an MDST, we must have diam(X) = diam(T ), so that X is an MDST.

We could use this observation to consider all edges (u1, u2) ∈ E, all bipartition of vertices so that ui ∈ Vi
and compute SPTs for Ti, join them by (u1, u2) and compute their diameter. Among these trees is an
MDST, as we go over the (u1, u2), V (T1) and V (T2) of the hypothetical MDST T eventually. Yet, this
family is exponential due to the enumeration of all bipartitions.

We’ll now show that a certain tree based entirely on (u1, u2) is also an MDST.
We couldn’t find motivation for the following step, as our source doesn’t motivate (and prove) much.
We consider the quatity q(v) = dG(v, u1) − dG(v, u2). This quantity has the property that on a short-
est path P from v to u1, q(v) decreases along P . Indeed, if w is on P , then dG(v, u1) − dG(v, u2) =
dG(v, w) + dG(w, u1)− dG(v, u2) and by using dG(v, w)− dG(v, u2) ⩾ −dG(w, u2) (via triangular inequal-
ity) we get q(v) = dG(v, u1)− dG(v, u2) ⩾ dG(w, u1)− dG(w, u2) = q(w). Similarly (consider −q), one can
prove that q increases along shortest paths to u2.

We can use this to define sets of vertices Vi so that there is a shortest path in G or each v ∈ Vi to
ui that uses only vertices of Vi. For V1 of the form {v ∈ V : q(v) ⩽ k}, the vertices on a shortest path from
v ∈ V1 (if there are any, depending on k) to u1 are still in V1, and for V2 = V \V1 = {v ∈ V : q(v) > k}, the
vertices on a shortest path from v ∈ V2 (if there are any, depending on k) to u1 are still in V2. To insure
both sets are non empty, we can have ui ∈ Vi setting k = dG(d1, u1)− dG(dn, u2) (providing u1 ∈ V1) and
adding the conditions dG(d1, u1) < dG(dn, u2) (providing u2 ∈ V2).

We now build Y by building SPTs on V (Vi) with root ui and connecting them with (u1, u2). Y is a
spanning tree as the SPTs only had edges in Vi respectively, so no cycles are getting closed. A diam-
eter of Y may either use (u1, u2) or not. In the first case, it has we can decompose it’s length into
diam(Y ) = dY (a, u1) + w(u1, u2) + dY (u2, b) for endpoint a ∈ V1 and b ∈ V2. But by construction,
dY (a, u1) = dSPT (u1,V (Vi))(a, u1) = dG(a, u1) and similarly for b ∈ V2, so that since dG ⩽ dT , we have
diam(Y ) ⩽ dT (a, u1) +w(u1, u2) + dT (u2, b) and finally diam(Y ) ⩽ dT (d1, u1) +w(u1, u2) + dT (u2, dn) =
diam(T ), using a previous property about T , and the fact that a ∈ T1 and b ∈ T2............. (remains to be
proven).

TO COMPLETE: case of diam = 2radius, spt of center.
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2.3 Matching

min weight, blossoms, gale-shapley

Bipartite matching Suppose you’re managing a team that’s developing a video game. You have a
set of employees and a set of intermediate jobs to be performed by them to make the game. In your
team, employees have different skills and different levels of experience, so that some might not be able
to perform certain jobs (or at least not well or not in a reasonable time span). For example, you could
have two graphics designers that know two of the following skills: character design, landscape design and
animation.
How could you get a better picture of the situation ?

On way to represent the situation is the following: we represent employees and jobs by the vertices of a
graph, grouping employee vertices and job vertices together, and we add an edge between an employee
and a job if the job can be performed by that employee.

Employees Jobs

This graph will be bipartite:

Bipartite graph:

A graph is bipartite if its vertices are partitioned into A and B and for all edges {u, v} of the
graph, u ∈ A and v ∈ B or vice versa.

We’ll assume that one employee can work on one job only and that a job can be worked on by one
employee only.
Your goal is to get all the jobs done, if doing so is possible, by a clever assignment of employees to jobs.
So when we assign employee u to job v, we can represent this on our graph by highlighting edge {u, v}. By
our assumptions, each vertex can be incident to at most one highlighted edge. We are therefore looking
for a:

Matching:

A matching M is a subset of edges E of a graph such that no two edges of M have a vertex in
common.

To be precise, we are looking for a maximum matching, which is a matching of greatest size among all
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possible matchings. If all employees and jobs are matched in such a maximum matching, then we’ll have
an assignment for which all jobs can be completed. Otherwise, there is no way of completing all jobs with
our team. So how do we find a maximum matching in a bipartite graph ?

A first idea could be to add edges with different endpoints until all edges have been considered.

Maximal matching
Input: a graph (V,E)
1 Start with M := ∅
2 Take note of the matched vertices C := ∅
3 For {u, v} ∈ E:
4 If u /∈ C and v /∈ C:
5 Add {u, v} to M
6 Add u and v to C
Output: a maximal matching M

There are no spelling mistakes in this description: we output a maximal matching, which is a matching
to which no edges from E can be added to produce another matching.

Before getting into the subtle difference between maximum and maximal, we’ll check the algorithm.
The loop invariant is that M stays a matching: at each iteration, we add a edge only if its endpoints aren’t
matched already. After termination, when all edges have been considered, no more edge can be added
to M and so that it remains a matching. To see this, recall the iteration in which the edge to be added
was considered: we discarded it, as one of its endpoints was already matched. So it’s endpoints are still
matched in M and we can’t add it without breaking the matching property.

Are maximal matchings also maximum ?
If they were, our previous algorithm would solve our problem. Unfortunately, they aren’t. The problem
lies in the fact that an unfortunate ordering of the edges in our algorithm can led to sub-optimal choices,
as the following example shows:

In the case of this Z-shaped graph, the matching represented by the blue edge is maximal: adding any of
the two remaining edges is impossible, as in both cases, one of their endpoints is already matched. The
red edges represent a matching of greater size, so the blue matching is maximal, but not maximum.

Ex.MaMu: There is however an interesting relation between the sizes of maximal and maximum match-
ing: if Ma is maximal and Mu is maximum, then |Mu| ≤ 2|Ma|. Prove this (later).
So the maximal matching algorithm provides us with an upper bound on the size of a maximum matching.

If we analyse the previous counterexample, we may get an idea as to how to improve on a given matching.
This way, we don’t have to start solving the problem from scratch again.

If we had a way to detect that the blue edge’s endpoints are connected to two different vertices that
aren’t matched by the blue matching, we could then perform a switch operation that discards the blue
edge and adds the red ones. Let’s attempt to generalise this.
To increase the size of the matching, we need to increase the number of matched vertices. So we can start
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by looking for vertices that haven’t been matched by our original matching. If we find one, we look at
its incident edges and disjoin two cases: either the other endpoint of that edge isn’t matched, in which
case we can add that edge to increase the matching, or it isn’t, in which case there is an edge from the
matching incident to the other endpoint.
The previous counterexample shows that the second case isn’t hopeless: we follow the edge from the
matching and hope that the next endpoint on our path is connected to an unmatched vertex.
We can iterate this reasoning and hope to end up with the following structure:

Augmenting paths:

An augmenting path P for a matching M is a path who’s start- and endpoint aren’t matched by
M and who’s edges alternate between being in E\M and in M .
So in particular, augmenting paths start and end with edges from E\M and have odd length.

For example, the previous counterexample represented an augmenting path of length 3.

Given an augmenting path, we can improve the matching:

Augmenting matchings:

Given an augmenting path P for a matching M , the symmetric difference M∆P (the edges that
aren’t common to both) is a matching of greater size then M .

Proof: To verify that we end up with a matching, we look at the vertices and disjoin cases. If the vertex
isn’t on P or is one of its endpoints, it will be incident to the at most one edge of M∆P since M is a
matching and the endpoints of P aren’t matched by M . If it is in the interior of the path P , then it’s
incident to and edge that is common to M and P , which will be deleted, and also to an edge that is in P
only, which will be added, but to no other edges, as M is a matching and P a path. So these points will
still be matched in M∆P .
By the nature of augmenting paths, there is one more edge of E\M on them then from those of M .
So |M∆P | = |M |+ 1 > |M | and we’ve obtained a bigger matching. □

So we can look for augmenting paths in a given matching to improve on it. We can then repeat this
step, knowing that at some point, there can’t be any augmenting paths anymore, since the size of the
matching keeps increasing, but is bounded by |E|.
Before clarifying how we can find augmenting paths (if there are any) in practice, we should address the
elephant in the room. If we can’t find any further augmenting paths, is the matching maximum ?

Characterising maximum matchings through augmenting paths:

M is a maximum matching ⇔ there are no augmenting paths for M .

Proof: The contrapositive states that M isn’t a maximum matching ⇔ there is an augmenting path for
M , and it’s what we’ll prove. We’ve already taken care of ⇐ in the previous result.
Proving ⇒ requires more care.
We’ll investigate the difference between matchings M and M ′ with |M | < |M ′| in hope of finding some
way to augment M . In fact we’ll study the difference quite literally: when looking at the edges of M∆M ′
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only, the vertices of the graph come in 3 categories: either they aren’t incident to any edges, or they are
incident to 1 or 2 edges, where in the last case, the two edges have to come from different matchings.
So if we walk along the edges of M∆M ′, we will trace out nothing but disjoint cycles or paths, depending
of whether the walk ends where it started or ends in a vertex of degree 1. All other walks are impossible,
as one would have to encounter a vertex of degree at least 3.
The cycles have to be even, since they can only alternate between edges of M\M ′ or M ′\M . So on them
we count as many edges of M\M ′ as those of M ′\M .
The same is true for even paths. But for odd paths, things start to get interesting. These paths are aug-
menting paths for the matching which leaves the paths endpoints unmatched. So if we find an augmenting
path for M we have the result we looked for. Does there have to exist such a path ?
If there wasn’t, either all paths would be even, so that by our counting |M | = |M ′|, or all odd paths would
their majority of edges in M , so that |M | > |M ′|. But |M | < |M ′| by assumption, so this can’t happen.
There must exist an augmenting path for M . □

This is great news! It means that the approach of successively improving matchings with augmenting
paths until there aren’t any will output a maximum matching.
So all that’s left for us to do is to develop a way of systematically finding augmenting paths or determining
that none exist.

For example, we consider the following bipartite graph and matching (blue edges):

a

b

c

d

e

f

Augmenting paths start and end at vertices that aren’t matched by the matching. So the first step will be
to keep track of the un-/matched vertices. In the example above, we could start at c, which is unmatched.
Next, we have to find a path that alternates between edges on and off the matching and ends at another
unmatched vertex. We will do so with a graph search close to breadth-first search.

First, we consider the neighbors of c, d and f . They are matched, so we follow the unique edges to
get to a and b respectively, ignoring the other edges. Finally, a only leads us to a vertex we’ve already
visited, while b leads us to an unmatched vertex, e.

a

b

c

d

e

f
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So we find the augmenting path (c, f, b, e). How do we proceed in general ?

Here’s an algorithm that looks for augmenting paths starting at v.

Augmenting Paths
Input: a graph (V,E) and a matching M (and a set C of vertices matched by M)
1. Check if V \C has size at least 2 and take an unmatched vertex v from it.
2. Construct a tree routed at v as follows:
3. Add the neighborhood of v
4. For the leaves u of the tree, consider two cases:
5. If the the distance to v is even, add the unmatched edges of {u,w} that lead to vertices not already
in the tree. Then check if one of the w is unmatched. If it is, the w-v-path is augmenting, so we return
it. If the distance is odd (and by iterative assumption, u is matched), add the unique edge of u in the
matching M to the tree.
6. Iterate step 5. until all vertices reachable from v have been considered (that is, if there are no more
unmatched edges leading to new vertices in step 5.)

We construct a tree, layer by layer, alternating between edges form the matching and edges not in the
matching. The immediate question is: if an augmenting path starting at v exists, does our algorithm find
one ?

To see that it does, notice that the tree we construct contains all the vertices that are reachable from
v and that all paths on it are alternating between edges form the matching and edges not in the matching.
The fact that we are building a tree requires a subtle justification of great importance.
The structure is surely connected, as we repeatedly get neighborhoods, so that all vertices have a path to
v, by induction. Can there be cycles ?
When considering the edges that aren’t in the matching, we exclude those that lead to vertices that al-
ready are in the tree, preventing a cycle from being closed. But we don’t check this for the edges in the
matching, which can lead to problematic situations, such as this one:

c

g

a

b

f

h

e

d

Here, our construction would fail once we reach d and f . The failure is due to the fact that the edge from
the matching is connecting two vertices from our tree, thereby closing a cycle.
Even more embarrassingly, there is an augmenting path we fail to get: (a, h, g, f, e).
Can we fix this ? Or does this problem ever appear in our context ?

Will investigate how to fix this problem for general matchings in the next chapter. Now however, we’re
still in the setting of a bipartite graph. By investigating carefully, we notice that the cycles closed by edges
of the matching must be odd, as the paths to the endpoints of the closing edge are augmenting, thus odd.
But bipartite graphs can’t contain odd cycles: if there was one, it would have to contain an odd number
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of vertices, which belong to one of two partition sets. So two neighbors on the cycle would have to be in
the same partition set, yet this is impossible by bipartiteness.

Ex.BOC: It turns out that the property of not having odd cycles implies that the graph is bipartite.
Show how to construct a bipartition from this property.

So in the case of a bipartite graph, we don’t close cycles when adding a layer to our tree correspond-
ing to edges from the matching. We therefore conclude that we really are building a tree.

We now can settle the main question of whether we find an augmenting path starting at v, if one exists.
An augmenting path P starting at v has its first edge in the tree, since the tree contains the neighborhood
of v. We then show that all further vertices on P can be reached on our tree inductively. The induction
step disjoins two cases. For the current vertex on P , if the previous edge on P is from the matching, then
there is a unique predecessor, the vertex it’s matched with, which is both on the tree and on the path. If
the previous edge isn’t from the matching, it may also be in the tree but if it isn’t, it’s only because there
is another edge from the tree that connects to the endpoint. To be precise, the edge would have been
added in step 5 of our algorithm, since it’s a neighbour to a matched vertex, only if it didn’t close a cycle:
this implies that the vertex was already in the tree.

In conclusion, we can there fore use the following algorithm to find maximum matchings in bipartite
graphs, as is guaranteed by the characterisation of maximum matchings by augmenting paths.

Bipartite Matching
Input: a graph (V,E)
1. Start with a matching, for example the output of Maximal Matching, or ∅,
2. Use Augmenting Paths starting from an unmatched vertex v
3. Augment the matching by the augmenting path (take the symmetric difference)
4. Reiterate 2. and 3. until no more augmenting paths can be found for all exposed vertices.
Output: a maximum matching M

As a final remark, note that it is possible that two unmatched vertices exist, but no augmenting path
does. This may come a bit as counter-intuitive, but it is possible:

In a matching of this graph, we may take only one edge per triangle, leaving one vertex unmatched. The
only possibility for that vertex to be matched is when we match it to the center of the "wheel", which we
may do once at most. So there will always be at least two unmatched vertices in a matching, in particular
in a maximum one, which doesn’t have augmenting paths.

Ex.EV: When looking for augmenting paths, we’ve looked for one starting at all exposed vertices in
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each iteration. But is this necessary ? If no augmenting path starting at an exposed u was found in one
iteration, could it be the start of an augmenting path in the next ?

We conclude this section with some nice exercises on bipartite matching:

Ex.MD: We’re given some planar shape made of identical square tiles: we can model this by a finite
subset of Z2 by identifying squares with their lower left corner. We’re asked to cover this shape with
dominoes such that as many tiles are covered as possible. How do we proceed ?

General matching
We now investigate how to fix the problem we could afford to ignore in the previous section, because the
graph was bipartite. This will allow us to find maximum matchings in non-bipartite graphs.

Matching in general graphs is of interest when the objects to be matched aren’t in two categories (em-
ployees and jobs in our previous example). For example, consider a school class that is playing badminton
in 1 vs. 1 matches. Student pairs inform the sports teacher that they wish to face each other in a match:
based on these preference, how can the sports teacher get as many desired matches playing simultaneously
?
If we represent the students by vertices connected by an edge if the corresponding pair wishes to face off
in a match, we are looking for a maximum matching in a general graph, which will correspond to the
student pairs we can have playing simultaneously.

Recall the problem in our approach to find augmenting paths. We ran into trouble when an edge of
the matching connected two vertices already in the tree. This edge of the matching closed a cycle in
our tree, which is called a blossom. Blossoms have a particular structure: they are odd cycles that are
alternating between edges from the matching and edges not in the matching, except at a single point,
called the base of the blossom. The name comes from a particular way to deal with them, which we won’t
follow here: blossoms are shrunk at first, and then we un-shrink them (they "bloom") once we’ve found
an augmenting path, and handle this un-shrinking so as to maintain the path.
In such a case, an augmenting path could still exist, as was shown in the example:

c

g

a

b

f

h

e

d

What do we do in such a situation ?
What can be said about the augmenting paths passing through such cycles ?

The augmenting paths passing through blossoms in the graph will "jump branches" in the tree we use to
search for augmenting paths. For example, in the above figure, the alternating path of the lower branch,
from a to f will jump to the higher one, that from a to d to continue.
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One way to fix this is to "double" the edge in the tree, as we represent here:

...

...

Graph

a

b

c

d

...

...

Tree

a

b

c

d

b

c

This helps getting a clear picture. It also maintains the whole point of the algorithm: if the graph has an
augmenting path, we can find it in the tree we construct, rooted at the start of the augmenting path.
The argument given to see this is the same as in the previous section, since the matched edge will always
be added to the tree, possibly twice if it connected two vertices already in the tree.

We can fix our algorithm "Augmenting Paths" with one line of pseudo-code:

5. If the endpoints of the matched edge are both in the tree, add it twice to the tree with the order of the
endpoints reversed.

Ex.BlBl: Though our "doubling" of the edge in the tree fits in some way the image of the blossom
blooming, we’ll ask you to prove a property that has given the name to blossoms. To do so, we define
G/B for a blossom B wrt. M to be the graph with the vertices of B repaced by a single vertex b, such
that all edges inicident to vertices of B are now incident to b. Show that M is still a matching in G/B
and that if G/B has an augmenting path wrt. M , the so does G.

Minimum edge cover:
Consider the problem of finding the minimum size set of edges of a graph, so that all vertices are incident
to at least one edge of the set. A first observation to make about such a set is that it can’t contain any
path of length greater the 3: if it did, we could delete a middle edge of the path and retain the edge cover
property, as the endpoints of the delete edge are still covered by the neighbouring edges of the path; this
would contradict minimality. This means that a minimum edge cover is a node-disjoint union of stars.
If we remark further that by selecting one edge per star we obtain a matching who’s size is the number of
stars, we can develop the following intuition. Having stars with many edges seems inefficient, as all these
edges are used to cover the same central node. Also, having many stars seems to decrease the number of
edges per star. So if we had a way of turning matchings into edge covers, we could look for a maximum
matching, and hope that the resulting edge cover has few egdes.
We can turn a matching into an edge cover, by doing the following for each uncovered vertex: we add an
edge linking it to one of the matched vertices. To see that doing this is always possible, we must actually
assume that the graph has no isolated vertices and that the matching is maximum. Then, each vertex has
an edge incident to it, which leads it to a matched vertex, as otherwise, this edge could have been added
to the matching, contradicting it’s maximality.
If we denote by m the size (number of edges) of any matching and u the number of unmatched vertices,
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then the graph has |V | = 2m + u. If M and U represent these quantities for a maximum matching then
we have M ⩾ m. These in-/equations imply that m + u ⩾ M + U . Here M + U is the size of the edge
cover we built from the maximum matching. If we recall that we can obtain a matching of any minimum
edge cover by selcting an edge per star, then if m is the size of this matching, m + u is the size of a
minimum edge cover and we’ve just found that M + U is also minimum. So the edge cover we built from
the maximum matching is a minimum edge cover.
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2.4 Network Flows and Minimum Cuts

Ex.MCSA: Show that cuts are subadditive, in the sense that u(A ∪ B) + u(A ∩ B) ⩽ u(A) + u(B),
for positive capacities. Deduce also that u(A\B) + u(B\A) ⩽ u(A) + u(B). What consequence does this
have if A and B represent minimum s-t-cuts ?

Flow decomposition:
If we picture the flow as a fluid, each fluid particle of a s-t-flow should follow an s-t-walk in the graph. We
have the following flow decomposition theorem:

Flow decomposition:

For an s-t-flow f in a digraph G, there are a collections P and C of s-t/t-s-paths and cycles re-
spectively, in number |P ∪ C| ⩽ |E|, and flows fp and fc with support in p ∈ P and c ∈ C such that
f(e) =

∑
w∈P∪C:e ∈w

fw and the flow value is
∑

p∈Ps,t

fp −
∑

p∈Pt,s

fp, where the first sum ranges over the

s-t-paths, and the second over the t-s-paths. One can compute P and C in O
(
|E|2

)
time. If f is integral,

so are the flows on the paths and cycles.

These may not be the augmenting paths from Ford-Fulkerson, since they were paths in the residual net-
work.
Proof: We iterate the following procedure, that recovers paths and cycles and decreases the s-t-flow. We
consider the graph induced by the edges for which f(e) > 0. We start at any such edge and extend it
to paths of increasing length by adding edges to its endpoints. After at most |E| addition of edges, we
either close a cycle or have both endpoints such that there are no edges to continue along them. In the
first case, we add this cycle c to C and set fc = min

e∈c
(f(e)) (the bottleneck), and reiterate on flow f − fcχc

(it’s a flow as balance is conserved and capacity satisfied). In the second case, we note that the endpoints
can only be s or t since we’re dealing with an s-t-flow, so that this is an s-t/t-s-path p that we add to P ,
setting fp = min

e∈p
(f(e)). Again f − fpχp is an s-t-flow and we iterate on it. Note that if f is integral, so

are the fp and fc. At each iteration, the number of edges for which f(e) > 0 decreases by at least one, by
the number of edges in which the bottleneck is attained, so that we iterate at most |E| times. Finally, an
edge is last considered when f(e) =

∑
w∈P∪C:e ∈w

fw.

All pairs minimum cut and Gomory-Hu trees:
We’re interested in finding an algorithm that determines all capacities of minimum st-cuts and one such

cut, for all pairs of vertices s and t. We’ll try to do better then the brute force approach of
(
|V |
2

)
minimum

cut computations.

A special case where this problem seems easy are trees T . For A representing an s-t-cut so that s ∈ A,
and for P the unique s-t-path in the tree, we see that u(A) ⩾

∑
{w,v}∈P ;w∈A,/∈A

u({w, v}) by positivity. In

particular u(A) ⩾ min
{w,v}∈P

(u({w, v})). But for the edge e achieving this minimum, the vertices of T\e

splits into two connected components U and W , so that u(U) = u(W ) = u(e), one component containing
s and the other t. So U is an s-t-cut, and u(A) ⩾ u(U), so that it is a minimum s-t-cut.
So to find the minimum cut in a tree, we just have to find the minimum capacity on unique s-t-path and

30



consider the bipartition obtained by deleting a corresponding edge.

FIX FORM HERE: Williamson or Cook or the original paper, with figures like the one I attempted
below to understand what the fuck is even going on in those proofs.

The idea behind the Gomory-Hu tree TGH is to construct a tree on the vertices V , but who’s edges
EGH are possibly different from that of E, that has the property that the biparitition obtained by deleting
edge {u, v} ∈ EGH represents a minimum u-v-cut in the graph G.
We can show that this tree is enough information to determine any s-t-cut in G. Indeed, if s = v1, ..., vk = t
is the unique s-t-path in TGH , then for A representing a minimum s-t-cut in G so that s ∈ A and
u(A) = c(s, t), where c(s, t) denotes the capacity of a minimum s-t-cut in G, then there comes an i so
that vi ∈ A and vi+1 /∈ A. Then A represents a vi-vi+1-cut in G and hence c(s, t) ⩾ c(vi, vi+1). In
particular, we have c(s, t) ⩾ min

i
(c(vi, vi+1)). Now if we consider the bipartition given by the compo-

nents of TGH\(vi, vi+1), with one partition set, say B, contains s, then by the property of the Gomory-
Hu tree, this B also represents a vi-vi+1-cut in G, and since it represents an s-t-cut too, we have
c(vi, vi+1) = u(B) ⩾ c(s, t). So we actually have c(s, t) = min

i
(c(vi, vi+1)), and finding the minimum

s-t-cut on a Gomory-Hu tree provides a minimum s-t-cut in G.

We will construct the Gomory-Hu tree by forming a sequence of trees, each of which has vertices rep-
resenting sets of vertices of the original graph. In the k-th iteration, we’ll start with vertices V1, ..., Vk,
which for a partition of the vertices V of the graph G. Each such set-vertex will have a representative
ri ∈ Vi, a special vertex. We start with V1 = V in the first iteration, choosing any ertex as representative
r1. At each iteration, we choose a set Vi of size ⩾ 2, and a vertex t ̸= ri in it. We then compute a minimum
ri-t-cut in G, represented by X where ri ∈ X. We then split Vi into two parts, which will be among the
next set-vertices V1, ..., Vk+1 of the next iteration. We split it into Vi∩X and Vi\X. The representative of
Vi ∩X remains ri, while we set t to be the representative of Vi\X. We now handle the edges. The edges
of the tree at the start of the k-th iteration can be represented by (ri, rj). To get the next tree, we start
by keeping the edges that weren’t incident to ri. Next, we add the edge (ri, t) with capacity the value of
the minimum ri-t-cut in G we computed. For the neighbouring rj of ri in the starting tree, we check if
rj ∈ X in G, in which case we keep (ri, rj) in the next tree, or rj /∈ X in G, in which case we take (t, rj)
instead of (ri, rj) in the next tree, and with the same capacity. Once all V1, ..., Vn are singletons, we’re done.

This does indeed construct trees, as we subdivide vertices at each step, so that hypothetical cycles in
the next graph would also be in the previous one, which is impossible as it was a tree. We’ll now show
that at each step, we have the Gomory-Hu property: the the union of the set-vertices, of a partition set
of biparitition obtained by deleting edge {ri, rj} in the k-th tree, represents a minimum ri-rj-cut in the
graph G.
We have it after the first iteration, in which there is just a single edge which is by definition such that the
property holds. To see that it’s maintained by an iteration, we analyse the change in edges at each itera-
tion. For the vertices rj non-incident to ri, in the bipartition of set-vertices obtained by deleting {ri, rj},
we note that Vi ∩ X and Vi\X are in the same parition set, as they should so that the corresponding
ri-rj-cut in the graph G stays the same.
For the rj that were previously incident to ri, we now have edges (ri, rj) or (t, rj). Since ri and t are
connected by (ri, t) in the new tree, and all edges previously connected to ri are now connected to either
ri or t, when we delet one of the (ri, rj) or (t, rj), then ri and t are still in the same component (the paths
to ri may now go over t in that component, and those to t over ri). So we are in the same situation as for
the edges that weren’t incident to ri: the cut corresponding to the the bipartition of set-vertices obtained
by deleting the edge is the same, hence it’s still minimal by the property for the previous iteration.
For the new edge (ri, t), its capacity is by definition the value of a minimum ri-t-cut in G as desired by
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the property. It remains to see the the bipartion obtained by its deletion in the tree also corresponds
to minimum a ri-t-cut in G. We can see that in the new tree, with our costruction of egdes previously
incident to ri, the rj that are in X are in ri’s component of the cut obtained by deleting (ri, t), while the
rj not in X are on t’s side. We thus have two cuts in G to compare, the one represented by X and the
one corresponding to the components obtained by deleting (ri, t), which we’ll represent in G by PT . All
rj that were in X are connected now to ri through (ri, rj) in the new tree, so that by deleting (ri, t) in it,
rj is in ri’s component. Similarly, all rj that weren’t in X are connected now to t through (t, rj) in the
new tree, so that by deleting (ri, t) in it, rj is in t’s component.

X

ri

t

rj v

Vj

Prt

Vi
rj′

Pij

Pij′

Triangular property:

If c(s, t) denotes the capacity of a minimum s-t-cut, then for any three r, s, t ∈ V , we have
c(s, t) ⩾ min(c(s, r), c(r, t)).

Proof: We let A represent a minimum s-t-cut so that s ∈ A and u(A) = c(s, t). We disjoin the cases of
r ∈ A and r /∈ A. If r ∈ A, then A represents an r-t-cut, so that u(A) ⩾ c(r, t), and if r /∈ A, then A
represents an s-r-cut, so that u(A) ⩾ c(r, s). In either case min(c(r, s), c(r, t)) ⩽ u(A) = c(s, t).

How to properly exploit a monopoly:
Suppose you manage all cafés of your city and your goal is to squeeze as much money out of your fellow
citizen. You’re given a set [b] of buyers j, for each of which you know the prohibitive price mj for coffee
(the most they’re willing to pay for a cup of coffee) as well as the accessibility to the next café in the form
of Sj ⊆ [c] (the set of cafés consumer j is willing/able to go to), and a set [c] of cafés i, that you own,
each of which can sell ai cups of coffee. Our goal is to determine xi at which to sell coffee in café i so as
to obtain highest income. We assume that for prices x, buyer j will get their coffee at the cheapest café
in Sj .

If we sold coffee at price x in every café, we could model allocation as follows. We create a bipartite
digraph with vertices representing buyers and cafés, and add edge (i, j) if buyer j has access to café i. We
turn this into a flow-network by adding a source s that we connect to cafés i with and edge with capacity
x.ai, and a sink t which we connect buyer j to with an edge of capacity mj . The edges between buyers and

cafés have infinite capacity (in practice, capacity 1 +max

∑
i

xai,
∑
j

mj

 will do the job). An s-t-flow
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will represent a possible allocation of coffee to buyers, as for a uniform price, the buyers are indifferent
between where they get their coffee from. This representation requires buyers to buy a fraction of cup of
coffee.
In this context, a minimum cut may not use edges between buyers and cafés (as cut (s, V \s) will be lower),
so both endpoints must be in the same partition set,and more generally, the neighbourhoods of buyers
and cafés must be in the same partition set.
The partitions therefore have form (s ∪ S ∪ δ(S), t ∪ [c]\S ∪ δ([c]\S)) where S ⊆ [c] and so that δ(S)
and δ([c]\S) are disjoint (which thy have to be, for otherwise a buyer would have access to two cafés in
different partition sets, so that at least one edges between buyer and café is used in the cut, which we
prohibited). The cut has value

∑
i∈[c]\S

xai +
∑

j∈δ(S)

mj .

In the corresponding maximum flow, the edges of the cut are used in full capacity: for the buyers, this
means that the prohibitive price is reached, and for the cafés, this means that the local coffee supply is
completely sold.
TO CONTINUE: example from Tardos and Vazirani (AGT). Might also be complete nonsense as alloca-
tion unclear.

Multi-commodity flows
In the multi-commodity flow problem, we ship K commodities k form sources sk to sinks tk (the source
of one commodity may for example also be the source or sink of another). That is, we have K sk-tk-flows
fk for each commodity and we additionally require that

∑
k∈[K]

fk(e) ⩽ u(e), so that the total flow of all

commodities on an edge doesn’t exceed its capacity.

Note that if non-zero sk-tk-flows exist for all k, then a non-zero multicomodity flow exists. This can

be seen by scaling the sk-tk-flows fk so that max
e

(fk(e)) ⩽
min(u(e))

K
, as in that case

∑
k∈[K]

fk(e) ⩽ u(e)

will always hold. In fact, we can scale the them down further for them to all have equal value.

We now present the Awerbuch-Leighton algorithm, which gets a flow with high lower bound on the
values of the fk. The problem the algorithm approximates is that of finding a multi-commodity flow for
which min(val(fk)) is maximum.
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2.5 Connectivity

In a directed graph, we can ask how many edge-disjoint or vertex-disjoint s-t-paths there are, or more
precisely for a collection of such paths of largest number. A related question is how many edges or vertices
need to be deleted from a graph so that one can’t travel from s to t, or more precisely we can ask for the
minimum numer of edges to remove to separate s and t.
The relation is that for p edge-disjoint paths, a s-t-separating set must contain at least one edge on each
path, so that the maximum number of edge-disjoint s-t-paths is less then the minimum number of edges
in an s-t-separating set. A similar result holds for the vertex version. Theses numbers are actually equal
and we can find paths and separators algorithmically.

Menger’s theorem (digraph-edge-version):

The maximum number of edge-disjoint s-t-paths is less then the minimum number of edges in an
s-t-separating sets. We can find such paths and separators in polynomial time.

Proof: We add capacities 1 to all arcs of the digraph and compute a maximum flow f for it. Then, we
compute a flow decomposition to find the collection of s-t-paths. They are edge disjoint, as f is integral,
in fact 0-1, so that f(e) =

∑
w∈P∪C:e ∈w

fw implies that only one of the terms in the latter sum can be

1, preventing two paths from using the same edge. We now need to show that this collection of paths is
maximum: if it wasn’t then we could push unit flow through a bigger collection, resulting is bigger flow
value, contradicting the maximality of f .
Finally, we turn to separators. Since we have unit capacity, an s-t-cut is the size of the corresponding
s-t-separator. By max-flow-min-cut, the miniumum cut has value f . Since f is maximum, there are no
t-s-paths in the flow decomposition, as we could decrease flow along these paths to get larger flow values.
So in this case f is

∑
p∈Ps,t

fp which is |Ps,t|. So also the minimum size of the corresponding s-t-separator is

|Ps,t|. To find a separator explicitly, one can choose one edge per path of Ps,t.
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2.6 Orientation

Given a graph G, we seek an algorithm that finds a strong orientation of G, which is an orientation of
edges {u, v} into (u, v) or (v, u), such that one can walk from any vertex to another along a dipath, when
such an orientation exists.
Robbins theorem from graph theory tells us that G has a strong orientation ⇔G is 2-edge-connected. So
we seek an algorithm that actually finds this orientation, assuming that G is 2-edge-connected.

DFS:
We’ll exploit a property of a graph search algorithm known as DFS (depth-first search).
DFS starts at an arbitrary root r and maintains a queue of vertices v1, ..., vq. It then repeatedly considers
the neighbourhood of v1 and creates a new queue v′1, ..., v

′
q+1 = v1, ..., vq, u if it finds a neighbour not in

the queue u ∈ δ(vq)\{vi : i = 1, ..., q}. One can think of DFS as building a directed tree by adding arc
(vq, u) at each such step. The path from root r to u will be r = v1, ..., vq, u. If no such neighbour exists,
we label vq as explored and proceed with queue v1, ..., vq−1. Once all vertices are explored, we’re done.
To check that the edges "added" in DFS don’t close cycles, we prove that it’s a loop invariant. The in the
step, no cycle is closed since u is not in the queue, nor explored. Its not in the queue since by definition
u ∈ δ(vq)\{vi : i = 1, ..., q}, and it’s not explored, for if it were, at the previous iteration in which u left the
queue and was labeled as explored, we’d get a contradiction since the edge {u, vq} would have been con-
sidered, and it would have required that vq had been added to the previous queue, but then vq would have
to tbe labeled explored before u. This is because, the queue has maximum size |V |, so that explored ver-
tices will eventually appear, and the last vertices of the queue are labeled explored before the previous ones.

In particular we note that for the DFS-tree, if r is the root, v is a vertex, and P is the unique path
from r to v, then for the set D(v) of all vertices that are further in the tree then v in the sense that their
path to r contains v, then all edges to from u ∈ D(v) not in the tree lead to vertices of P . Otherwise, we’d
contradict the order in which DFS visits vertices, by finding edges that wouldn’t have been considered
during DFS.

Orientation:
This property is what leads us to find a strong orientation of G if there is one. We construct a directed
DFS spanning tree from an arbitrary root r and for all edges not in the tree, since they connect vertices on
ta directed path (the one from r), there is a unique orientation with which to close this path to a directed
cycle. By DFS, any vertex can be reached from r. Now, if there was a vertex u such that u isn’t connected
to r, then by choosing it closest to r on its path from r (wlog), and deleting the last edge on that path
from r, we would split the tree in two components. By 2-conncetedness, there would be an edge (x, y) from
u’s component leading to r’s component, that isn’t in the tree. We now know that y is on the path from r
to u. So by taking the path from u to x, then (x, y) and then the path from y to r, which exists by mini-
mality of u on the r-u-path for that property, we get a path from u to r, contradicting the assumption on u.

Finally, we can extend this procedure to one that tells us if a strong orientation even exists. Note that
2-connectedness, which we now know to be sufficient is also necessary: if a stronge orientation exists,
then deleting an edge {u, v} can’t split the graph into two components, for otherwise there wouldn’t be
a path from u to v if {u, v} was oriented as (v, u) and mutatis mutandis. So once our DFS and orienta-
tion terminates, we can check if deleting any edge from the DFS tree disconnects the graph to check for
2-connectedness. If one such edge is found, then the graph can’t have a strong orientation.
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2.7 Coloring

Greedy vertex coloring, Vizing as in Williamson Shmoys, Hypergraph coloring and algos as in Voloshin
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2.8 Algorithms on strings

RNA secondary structure:
The macromolecule RNA is a string of smaller base molecules denoted A, C, G,U, that folds on itself by
pairing up bases A and U as well as C and G, so as to minimise a potential energy.
In mathematical terms, the RNA is a sequence c1, ..., cn where ci ∈ {A,C,G,U}, and we seek a match-
ing, given by pairs {i, j}, with certain properties. First, if {i, j} is in the matching, it must be that
(ci, cj) = (A,U) or (ci, cj) = (C,G). Minimizing energy will be interpreted as maximising the size of the
matching, so we seek a maximum matching. We have additional geometric/topologic constraints. RNA
shouldn’t be "knotted", which we’ll interpret that for i < j < k < l, we may have only one of the pairs
{i, k} and {j, l} in the matching (there is no crossing). Also, RNA can’t bend to much, so that i < j may
be paired up only if j − i ⩾ 5.

We attempt a recursive approach, by disjoining on the last cn being paired up or not in a optimal sec-
ondary structure. In the latter case, the problem is that on c1, ..., cn−1, and in the former things get more
interesting. If n is paired up with t, for t ⩽ n−5, then only pairs in the intervals [1, t−1] and [t+1, n−1]
are allowed, as pairs crossing intervals would violate the "knotting" constraint with the pair {t, n}.
If we find the optimal structures for c1, ..., ct−1 and ct+1, ..., cn−1, then these are the sub-structures on the
global optimum one. This argument shows that the maximum size of a matching v(i, j) for the problem
on ci, ..., cj is the maximum of v(i, j − 1) (j not paired up), and 1 + v(i, t − 1) + v(t + 1, j − 1) for all
i ⩽ t ⩽ j − 5 such that {ct, cj} = {A,U} or {ct, cj} = {C,G}.
We see that the recursive calls are on intervals of smaller length. By intialising with v(i, j) = 0 for all
4 ⩾ j − i, and computing the values v(i, j) for j − i = k for k = 5, ..., n− 1, we can find v(1, n), which is
the value of the total string that we seek.
This algorithm runs in time O

(
n3
)

since we have to comple n2 values v(i, j), each time by checking pair
compatibility and finding a maximum in O(n) time.

String matching with automata:
In the ananlysis of DNA, which can be represented as a sequence of bases A, C, G, T, we often want to
solve the problem of finding all places (if any) where a gene might be located. A gene is a smaller sequence
of bases that is included in DNA.
The brute force approach is to check at all n points of the DNA if the next m bases are that of the gene,
for a gene of size m and a DNA of size n. This is takes O(mn) time, but we can do better.

We generalize the problem to an alphabet of α characters, here α = 4. The point is that the sub-
string (gene) may have a certain self similarity, which makes the brute force approach inefficient. If the
substring is GAGA, then the brute force approach on GAGAGA will start one check on the second A,
despite the-self similarity indicating that we could have started comparisons after it.

We will construct a thing called an automaton that will locate the appearances of the substring in the
main string upon reading the main string. At each step, the automaton will indicate how close we are to
having a complete copy of the substring and use self-similarity of the substring in a clever way.
We represent the automaton by a digraph with m+ 1 vertices. Each vertex will represent the number of
matching characters in the first part of the substring that we have found aligned in the main string. If at
a current state, we’re at a given vertex (the state of the automaton), we look at the next character in the
main string. For each character in the alphabet, and each vertex, there will be one edge per character,
pointing from that vertex to another one, that we will follow according the the next character in the main
string we just considered, to go to the vertex/state of the next iteration. We’ll explain how to build the
automaton soon, but for now, we claim that the automaton handles self-similarity of the string by having
edges point to the largest prefix of the substring. This is best explained by an example: in the figure
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below, we’ve represented the automaton for the substring GAGAC. We have ommitted the edges leading
to the empty state.

G GA GAG∅ GAGA GAGAC
G GA A

G G G

C

G

The efficiency can be seen in the case of a mian string GAGAGAC: arrived at state GAGA, we read G and
instaid of moving to the empty state, we move to GAG. We then reach GAGAC in the next two iterations.

Whenever the final vertex corresponding to the full substring is reached, we know that the substring
has appeared, in the m last strings of the main string considered so far. Conversely, if the substring
appears, then we can show that the automaton will detect it. We know that if the automaton is on vertex
v, then the last strings of the main string considered so far are the string associated to that vertex (at
same length, when considering the last characters of the main string). We can then argue by induction on
the size of the main string. If the algorithm works for strings of size n, then for strings of size n+1, we’ve
located the appearances of the substring in the first n characters of the string. The last state transition of
the automaton will indicate us if the substring is also a suffix of the main string. So this treats the only
possible appearance that wasn’t in the first n characters, and concludes the induction.

We now discuss how to construct the automaton. We do this vertex by vertex, starting from the one
representing the empty string to that representing the full substring. At each new vertex added, repre-
senting s and for each character c in the alphabet, we add an edge from that vertex to either the next
vertex to be added if sc is a prefix of the substring, or to the previous vertex of greatest size, corresponding
to z, such that z is a suffix of sc. This last step requires at most m comparisons, each being a comparison
of at most m characters. Since we do this for each new vertex and each character in the alphabet, con-
structing the automaton requires O

(
m3α

)
comparisons. After that, running the main algorithm consists

in n elementary steps, so that the total cost is O
(
m3α+ n

)
. For small α and m, compared to n, which

is the case for the DNA example, this beats the brute force approach.

Knuth-Morris-Pratt algorithm:
Intro algo by Rivest et al, chap 32

Sequence alignment:
Algo design by Tardos, chap 6.6 and 6.7
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2.9 Phylogenetic trees

In the perfect phylogeny problem, we’re given n unordered sequences (sets) of characters called taxa
(singular taxon), such as the DNA of n species, but in the representation of a set of genes. We can identify
these taxa by ordering the m characters present over all taxa, and associating to each taxon t a row-vector
mt such that (mt)i is 1 if character i is in taxon t and 0 otherwise.
We’d like to guess the evolutionary history of these taxa, assuming that they’re related. We make the
following model: taxa may have common ancestors, that posses the characters that their descendants have
in common. At each generation, the ancestors gain a character, but never lose any, until we arrive at a
taxon that is among our n real-life observed ones. We can therefore represent the history by a rooted
directed tree, called a phylogenetic tree:

Phylogenetic tree:

A (perfect) phylogenetic tree is a rooted directed tree, where each vertex represents a taxon,
and each edge represents a character. It must have n leaves representing the taxa from the problem
input. Each character may be represented by a single edge only. The root represents the empty taxon.
If, for any taxon t represented by a vertex on the tree, an edge of the unique path from the root to t is
labeled with character c, then taxon t must posses character t.

The perfect phylogeny problem asks if a set of n taxa has a perfect phylogeny, and if so how many, and
for an algorithm to find one when one exists.

Perfect phylogeny theorem:

A phylogenetic tree exists for n taxa if for any pair of the m taxa, one can not find 3 taxa who’s
indicated values for the characters are (0, 1), (1, 0) and (1, 1). If this is the case, we can find a phylogenetic
tree in polynomial time.

Proof: To see that phylogenetic trees have this property, so that it’s a necessary condition, note that the
edges corresponding to any pair of characters c and d (we call edges by their character as the character
appears only once on a phylogenetic tree) can appear in three ways:

• The unique path to the tail of c contains d: then, all descendants taxa of the head of c must contain
both characters c and d, so that if in the order of characters c < d, then (0, 1) and (1, 1) may appear,
but not (1, 0).

• The unique path to the tail of d contains c: then, all descendants taxa of the head of d must contain
both characters c and d, so that if in the order of characters c < d, then (1, 0) and (1, 1) may appear,
but not (0, 1).

• The paths leading to the tails don’t contain the other character. In that case (1, 1) may not appear,
otherwise a corresponding taxon could be reached by two different paths.

To see that these conditions are actually sufficient is the core of the theorem.
The idea is that characters that appear in many taxa must have appeared early in the evolutionary history,
as in our model characters can’t vanish once acquired. So we’ll sort the characters in decreasing number
of appearances in the taxa, in O(mn) time. We then note that for a phylogenetic tree, the labels must
increase along paths: if c is on the path to the tail of d, then all the leaves that are descendants of d are
also descendants of c, hence also posses charcater c, so that c has more or equal number of appearances
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then d.
Before building trees, we note that if two characters have the exact same appearances in the taxa, we can
combine them to one character, find a perfect phylogeny for these modified taxa, and subdivide the edge
corresponding to that character into two corresponding to the two original ones. So we may assume that
no two characters have the same appearances.
We’ll try to build the trees inductively. The tree for one taxon is just a path. Note however that we’ll
order the path according to the ordering of characters given by the number of appearance per character for
all n taxa. If we have a perfect phylogenetic tree T for k taxa, how can we get one for an additional taxon
(assuming the properties of the theorem) ? If t is the new taxon, we consider its characters that have
already appeared in the tree. They must in fact for a path from the root to a taxon t′ or we can conclude
that the necessary condition is violated, and hence note phylogenetic tree may exist, as we’ll soon show.
With this property, we can build the next tree by adding edges corresponding to the characters previously
not in the tree in the form of a path starting from t′, in the order of the characters for the n taxa. This
is indeed a phylogenetic tree, as it’s a tree (we added a path), the path leading to t contains precisely the
characters of t, and all characters appear once, as the new edges correspond to characters previously not
in the tree.

We now prove the claim about paths made along the way. We first note that if a pair of the charac-
ters from t is on different paths from the root (so that there are are descendants with indicators (1, 0)
and (0, 1)), then there can’t be a be a phylogenetic tree with t (which indicates (1, 1)). We then stop the
algorithm and mention infeasibility. If not, all pairs must be aligned on a same path P . We can then show
that the characters on that path are precisely those that t has in common with T by a property called the
shared prefix property.
To show the prefix property, we’ll show that all characters of the path a also in taxa t. We’ll consider the
character l that is the last wrt. the ordering of characters that is on taxon t an on all other taxa of the
tree T . We denote by t′ the head of l. Since t′ was already in T , we can follow it in T until we reach a leaf
t′′. Now, for any character c in P different from l, the indicator of c and l for t′′ will be in configuration
(1, 1). Since c appeared earlier on P then l, its number of appearances must be ⩾to that of l. The tree
T must contain another leaf-taxa which indicates (1, 0), for otherwise there are only indicators of form
(1, 1), (0, 0), or (0, 1) among the k taxa, so that the number of appearances of l is greater or equal to
that of c, equality appearing only if only indicators of form (1, 1) or (0, 0) are present, in which case the
characters have the same appearances, a case we excluded in preprocessing, so that l would have more
appearance then c, a contradiction to l following c on P . But now that we know that there is another
taxa t′′′ indicating (1, 0), the new taxa t can’t indicate (0, 1), aka posses l but not c as t, t′′ and t′′ would
be a triple violating the necessary condition. So by checking the necessary condition in O

(
nm2

)
in a

preprocessing step, we may assume that it holds, so that t can’t indicate (0, 1), and since it has l, it must
indicate (1, 1), aka posses c. Hence, all the characters of P are in t, as we desired to prove all along.
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2.10 Enumeration algorithms and combinatorial generation

Spanning forests, and spanning trees via Prüfer codes:
Our goal is to find all the spanning forests of a graph G. We will do this recursively on the number of
vertices. We consider the recursive procedure A(G) which returns a list of all spanning forests of G. As
base case, if the graph is a single vertex, we return a list with that vertex as a forest. A(G) works by
selecting a vertex v ∈ V , running A(G\v), and post-processing. From a spanning forest of the list from
A(G\v), we can gain multiple spanning forests of G. We check the neighbourhood of v in G on which
component they’re in. To get a forest, the only condition is that no two edges leading v to the same
component are added: in all other cases, no cycles are closed and the graph remains a forest. So from each
forest of A(G\v), we obtain forests on selecting one or none of the edges leading to the same component.
Conversely, any spanning forest of G becomes a spanning forest of G\v if we delete v from it.
This algorithm runs in time O(|V |), but has exponential space complexity, as at most 2deg(v) forests can
be added to the list of A(G) for each forest of A(G\v).

In fact, we’ll show that the problem of enumerating all trees is exponential by nature, as a complete
graph has |V ||V |−2 trees (possibly isomorphic). There is also a linear algebra proof of this, using the
matrix-tree-theorem.
We will show this with Prüfer codes: each tree is in correspondence to a sequence of length |V | − 2 with
alphabet V . The idea is to construct the tree leaf by leaf. If we delete a leaf from a tree, we get another
tree, and we can reconstruct the initial tree if we know which vertex was the trees neighbour. When
deleting leaves one ofer the other, it’s good to have an order in which to delete the leaves, so as to know in
which order to glue them back. If we label the nodes from 1 to n = |V |, then we construct the Prüfer code
of the tree by repeatedly deleting the lowest labeled leaf and noting its neighbour pi ∈ V , until we arrive
at a graph with a single edge, both endpoints of which are leaves, so that our Prüfer code is p1, ..., pn−2.
To reconstruct a tree from any Prüfer code, we repeatedly add edge (pi, li) where li is the lowest labeled
vertex that hasn’t yet been added and which isn’t i the Prüfer code, starting from index i. Once we’ve
added (pn−2, ln−2), only two vertices haven’t appeared as leaves, and we connect them by an edge.
To show that this construction always produces a tree, we use induction. For n = 3, there is just one
pairing (p1, l1) and two vertices which haven’t appeared as leaves, so that we get a graph with 2 edges,
which is always a tree for n = 3. For the induction step, we note that after the addition of edge (p1, l1),
we can relabel the graph by decreasing the labels larger then li by 1, so that the future steps are exactly
the steps of the algorithm for the case n− 1. By induction, we know that they produce a tree, and since
we add l1 as a leaf to that tree, we still get a tree.

Minimal dominating sets:

Minimal multicuts:

Cycle space of a graph:
When the numer of sub-structures in a structure is very large, then we seek a way of representing these
sub-structures that requires little storage and simultaneously allows for efficient recovery of all the sub-
structures. We give an example of this for cycles in a graph, based on topology.

Note that any circuit and any walk in the graph can be represented as an expression
∑
e∈E

cee where

ce ∈ Z is the number of times we crossed the edge on that walk. These expressions can be though of as a
module. If we give the graph some orientation, then we can consider the so-called boundary map ∂ that
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we define to be linear over the module of edges, mapping edge (u, v) to the expression v−u on the module
of vertices over Z. The kernel of ∂ contains the (expressions of) circuits of the graph.
We seek a basis of this kernel. For a spanning tree T , each edge not in the tree closes a unique cycle C in
that tree: we’ll show that the elements

∑
e∈C

e form a basis of the kernel. A special case is that when the

graph is a tree: we’ll also need this case in the proof for general graphs. So for a tree, we have to show
that the kernel is trivial (contains only 0). To see this, we use induction on the size of the tree. At each

step we consider an expression
∑
e∈E

cee such that ∂

(∑
e∈E

cee

)
= 0 and a leaf u of the tree, connected to it

by {u,w}. By writing ∂

(∑
e∈E

cee

)
=
∑
v∈V

kvv for some kv ∈ Z by linearity and summation, we note that

ku = c{u,w}, as this is the only edge where u appears. Then
∑
v∈V

kvv = 0 implies that c{u,w} = ku = 0 as

the v ∈ V form a base of that module, and
∑
e∈E

cee is actually an expression in the modul of the smaller

tree, the one where leaf u was deleted. So by induction, we get that the rest of the ce = 0.

Now we turn to the general case. We denote by e1, ..., er the edges not in the spanning tree T and
by zi the expressions of the unique cycles Ci that the ei close. IIf we are to write

∑
e∈E

cee =
∑
i∈[r]

kizi for

a kernel element (∂

(∑
e∈E

cee

)
= 0), since we cross the edges ei only in Ci, we should have ki = cei , as

e ∈ E form a basis of the edge module. By linearity of ∂,
∑
e∈E

cee −
∑
i∈[r]

ceizi is in its kernel. Yet, all the

coefficients for the ei of this experssion are 0, so that the possibly non-zeor ones are on the edges of the
tree T . As we’ve just previously established, this implies that the expression is 0, so we really do have∑
e∈E

cee =
∑
i∈[r]

ceizi for any
∑
e∈E

cee ∈ ker(∂). These coefficients of
∑
i∈[r]

ceizi are unique, as the edges ei

appear precisely only in the zi respectively, so the zi do form a base in ker(∂) as a module.

To get enumerate the cycles of the graph, we can now do the following. Since a cycle corresponds to
an expression

∑
e∈C

e, which we now know can be written as some
∑
i∈[r]

kizi, where ki = 1 if ei ∈ C and 0

otherwise, we can enumerate cycles by considering all 2r expressions
∑
i∈[r]

kizi where ki ∈ {0, 1}.

TO FIX: replace Z by F2 so that in the last part the cycle comes from expressing
∑
i∈[r]

kizi in the E and

considering connected components and Euler-tour decompositions.
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2.11 Sensitivity analysis and post-optimization

In this section, we give few examples of sensitivity analysis and post optimization processes. Sensitivity
analysis asks how a small perturbation in the input of the problem can lead to a change in its solution. In
a post optimization process, we try to find efficient ways of adjusting a current already computed solution
for it to solve the problem for a slightly modified input instance. Since there are many ways to perturb an
input, we only study particular types of perturbations in this chapter, but remark that other perturbations
exist.

A sensitivity analysis of MST:
We want to know what happens to the optimal value of a MST if we perturb the edge-weights w of a
graph G to w′, where |w(e)−w′(e)| ⩽ ε for all e ∈ E. If T is an MST for w and T is an MST for w′, then
we have the following. On the one hand, w′(T ′) ⩽ w′(T ) ⩽ w(T ) +

∑
e∈T
|w(e)−w′(e)| ⩽ w(T ) + (|V | − 1)ε

and on the other w(T ) ⩽ w(T ′) ⩽ w′(T ′) + (|V | − 1)ε with a similar argument, since trees have the same
number of edges. In all cases of signs, we have |w(T )−w′(T ′)| ⩽ (|V | − 1)ε. This means that the optimal
value is (|V | − 1)-Lipschitz in the perturbation, so in particular small perturbations shouldn’t make a big
difference on the optimal value (but the actual MST may differ on multiple edges).

A sensitivity analysis of BPP:
The situation is different for the bin packing problem. It asks, given a list of of weighted items (wi)i∈[n]
where wi ∈ [0, 1], for the smallest number of bins b such that we can partition [n] into b sets Bj such that∑
i∈Bj

wi ⩽ 1 for all bins (the bins have volume 1 and we can’t let them overflow). For this problem, we can

find a family of instances such that even for arbitrarily small perturbations, the smallest number of bins
used for one perturbation is increasingly larger then that of the original instance. Indeed, consider the

cases (wi)i∈[n] (the family of instances is indexed by n) where wi =
1

2
, where the optimal number of bins

is
⌈n
2

⌉
(pack the items two-by-two; optimal since

n

2
=
∑
i∈[n]

wi =
∑
j∈[b]

∑
i∈Bj

wi ⩽ b for any packing). For all

perturbations ε > 0, we can find an instance w′ such that |wi−w′
i| ⩽ ε for all i, which is w′

i =
1

2
+ ε, such

that the optimal value doubles! This is because we can only pack one item per bin, so that in particular
the least number of bins is n. So the distance in optimal values is

⌊n
2

⌋
, which grows with n and becomes

arbitrarily large.

A post-optimization for network flows:
Assume we’ve computed an maximum flow in a network, but that one capacity u(e) is perturbed to u′(e):
is there an efficient way of finding a maximum flow for the network with one perturbed capacity ?
If e was not in a minimum cut and u′(e) > u(e), then this cut is still minimum (as the value of a cut
can only have increased), and the flow for the unperturbed network is still feasible, and maximum, as it’s
value is still that of the minimum cut.
If e was in a minimum cut and u′(e) < u(e), then this cut is still minimum (otherwise, the initial one
wouldn’t have been). We can then find a flow which has the value of this new minimum cut, and which will
therefore be optimal. We look for an s-t-path containing e by DFS on the graph induced by flow-carrying
edges (here, it’s helpful to consider sources and sinks the are such also in the digraph sense, for it prevents
cycles in the flow). The edge e has to be the bottleneck of this path, for otherwise, the maximum flow
was less then the minimum cut. We can thus decrease the flow along this path from u(e) to u′(e), which
will have the value of the minimum cut, and hence be optimal.
In other cases of perturbations, things aren’t that easy. For an increase in capacity of an edge in a mini-
mum cut, we may need to keep using augmenting paths, and possibly more then one of them. For example,
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consider the following network:

...

s t
e

1

ε

n

ε

n

ε

n

ε

n

u

There are n pairs of edges with capacity
ε

n
. For the network with u(e) = 1, we have an optimal flow in

the 1-flow s-u-t. Note that e is in a minimum cut. If we increase capacity to u′(e) = 1 + ε, then the opti-
mal flow is the one of full capacity. To get it, we have to augment along n paths, by flow

ε

n
for each of them.
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2.12 Solutions

Ex.kSP:
The idea is that of finding a way to exclude certain paths precisely, so that we can solve the problem
by using the previous shortest path algorithms as routine, excluding the previous shortest paths at each
iteration.
Consider the situation in which we which P is a shotest s-t-path of G, and we which to find a shortest
s-t-path among those different then P . For such a path Q, there must and edge of P not used by Q: else,
since Q has no cycles, for an edge enumeration of P , Q has to use e1 first, as it would close a cycle from s
when reaching it otherwise, then e2 second, as it would close a cycle from the tail of e1 to e2, and so on,
so that Q = P .
We can solve the shortest path problem on the graphs G\e for the edges e of P , one of which contains
Q, and consider the shortest among these outputs, which will be shorter then Q, hence of weight equal
to Q, by definition of Q. No s-t-path other then P will be excluded from the feasible solutions to the
optimization problem, as its contained in at least one of the graphs, as it can’t contain all edges of P . So
this procedure yields a desired path.
To get the successive shortest paths, we will use a branching procedure, which we represent by a branching
tree. The nodes of the tree are shortest path subproblems on subgraphs. The children of a graph G′ with
shortest path P ′ will be graphs G′\e for the edges e of P ′, together with their shortest paths. We’ll show
that a least weight path among the paths of the problems of the leaves (childless nodes) of the branching
tree is a shortest path of G among the paths of G except for those present as solutions of non-leaf (the
ancestors) nodes of the branching tree. So in order to find the successive k shortest paths, we have to
branch k − 1 times. A branching iteration requires computing a minimum over the leaves of the tree and
then computing the children of a node achieving he minimum. Since the path P ′ has at most |V | − 1
edges, the node corresponding to (G′, P ′) can have at most |V | − 1 children, so that branching adds a
netto of at most |V | − 2 leaves per iteration. So the minimum to be computed over the leaves can be
done in O(k|V |) time, as we branch at most k times. When determining the children, we run a shortest
path algorithm on a subgraph of G at most |V | − 1 times, so that this step can be done in O

(
|V |4

)
(with

Floyd-Warshall, and better with Dijkstra). Since we branch at most k times, the total runtime of the
procedure is O

(
k|V |4 + k2|V |

)
.

Now we show the property we mentioned by induction on the number of excluded paths. For 0 excluded
paths, this become the conditions that the path be in G, which is true. A path R that is shortest among
the paths of G other then those of the n nodes of the branching tree that we branched on is in particular
a path among the paths of G other then the n− 1 ones we branched on, before the nth branching. It will
then be in contained in at least one graph of the leaves by induction. If it’s not contained in the graph
that is branch on in the nth branching, then we’re good, and otherwise, it must be in one of the children,
as it can’t contain all of the edges of the nth path, for the same reasons we gave previously for Q, as it
then would then have to be the nth path.
ERROR: It could be that the shortest path of a leaf G\e is also a shortest path of node G\e we branched
on, in the case that the shortest path is contained in multiple leaves at a branching. Then our argument
brakes. This is why Lawler uses a different branching on G\e1, G\e2 and the path uses e1, G\e3 and the
path uses e1 and e2, etc. This way, the paths are contained in exactly one of the children, as they can’t be
in multiple. Refer to paper "A Procedure for Computing the K Best Solutions to Discrete Optimization
Problems and Its Application to the Shortest Path Problem". □

Ex.DMP:
There are (at least) two ways of solving this.
In the first, we adapt Dijkstra’s algorithm. We denote by li(v) the value label of vertex v in iteration i,
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by Si the set of settled vertices in iteration i and by pi(v) the predecessor of v on a optimal s-v-path at
iteration i.
We preprocess the graph by adding −min(w(E)) to the weights, so that wlog. w ⩾ 0. This won’t affect
optimality of the paths, as any maximum weight edges of two paths differ from the same amount, so that
order is preserved.

We initialise with Si = ∅, li(v) =

{
0 : v = s

+∞ : else
and pi(v) = none.

We loop on extracting a minimum labeled vertex u not in Si, putting it in Si and relaxing the labels of
v ∈ δ(v)\Si by li+1(v) = min(li(v),max(li(u), w(u, v))) and setting pi+1(v) = pi(v) if the minimum is
attained in the first argument and pi+1(v) = u otherwise. We use same labels and predecessors for the
other vertices of V \Si. We stop when Si = V .
We prove the loop invariant that from vertices v in Si, the optimal s-v-paths are known and are in fact
contained in Si. This is true in the first iteration, in which S1 = {s} and l1(s) = 0. In iteration i, we add
v to Si+1, where v has predecessor u on the s-v-path P . Assume for contradiction that there is a path
P ′ from s to v, such that max(P ′) < max(P ). Consider the first edge {x, y} on P ′ such that x ∈ Si and
y /∈ Si. Since v was added, it must be the case that li(v) ⩽ li(y). Now, on the one hand li(v) = max(w(P ))
as li(v) = max(lj(u), w(u, v)) for some previous iteration j ⩽ i and lj(u) = max(w(P |s→u)) by the loop
invariant. On the other hand, li(y) ⩽ max(li−1(x), w(x, y)) ⩽ max(w(P ′|s→y)) ⩽ max(w(P ′)), where the
middle inequality comes from li−1(x) ⩽ max(w(P ′|s→x)), by the loop invariant. Butting the bounds next
to each other, we get max(P ) ⩽ max(P ′), a case we precisely excluded. So the algorithm terminates with
optimal paths.
The runtime is the same as Dijkstras (which can depend on the data-structure used), as all we did was
replace an addition by a comparision (when relaxing labels, we compute the max).

A second way of solving this problem is by noticing the following. If the minimum maximum weight
of an s-t-path is w, then there can be no s-t-path using edges e of weight w(e) < w. This can lead to
checking connectivity in graphs induced by edges e of weight w(e) < w, where w ranges over all possible
weigths w(E). However, we can do even better: its turns out that an MST solves this problem for all
pairs s and t.
Indeed, assume that the maximum weight edge on the s-t-path P of the MST T is w, achieved in e, and
that there exists a better path P ′ such that all edges in P ′ have weight less then w, aka w(P ′) < w.
Then T\e spolits into two components containing s or t, and there is an edge e′ ∈ P ′ that connects these
components. Then (T\e) ∪ e′ is a tree and it has less weight then T as its weight decreased by w and
increased by w(e′) < w, contradicting T ’s MST nature. So P ′ can’t exist and P is optimal. □

Ex.FLST:
(i) It’s in P. We check if the graph is connected and then if the induced graph G[V \T ] is connected (dfs).
In the positive case, G[V \T ] has a spanning tree (found with dfs) which we can extend to a spanning tree
of G in which all vertices of T are leaves by adding these vertices along any edge of their neighbourhood
(which exists as G is connected). This forms a spanning tree as no cycles can be closed and all vertices not
in T where already spanned in the spanning tree of G[V \T ]. Finally, since all vertices of T are connected
to the tree by a single edge, they’re all leaves.

(ii) It’s NP-complete. It’s in NP as we can verify a solution by checking if its a spanning tree (dfs
and spanning) if its leaves (compute degrees in time O(V E)) are in T . It’s NP-hard, as we can solve the
Hamiltonian path problem with it.
We do the latter by looping over the following, for u, v ∈ V , so for O

(
V 2
)

times. We check if there is a
spanning tree who’s leaves are in T = {u, v}: if so then there is a Hamiltonian path, otherwise, if none of
the loops return a positive answer, then there isn’t.
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If G has a Hamiltonian path, say with endpoints u and v, then this path is a spanning tree with leaves in
T = {u, v}, so that on that loop, we get a positive answer.
Conversely, any tree with leaves in T = {u, v} is a Hamiltonian cycle. To see this, note first that the leaves
must be T = {u, v} exactly, as a tree has at least two leaves (the endpoints on a longest path on it). Then,
start a walk at u and continue along previously unused edges of the tree of the walk. Each vertex on the
walk (except for u, v) has degree ⩾ 2 in the tree, so its possible to always extend the walk at these vertices,
along an unused edge of the tree. The edges of the walk can’t lead to a previously encountered vertex, as
this would close a cycle, which a tree doesn’t have, so it’s a path. The only way this path can end is at
v. If this path didn’t include all vertices of the graph, then deleting it from the tree results in a forest,
each component of which is connected by a single edges to the path in the tree (otherwise, we’d have a
cycle). Since each tree in this forest either has two leaves, not both of which could have been connected
to the path in the tree, or is an isolated vertex, we get the existence of at least one additional leaf to u, v
in the tree (the previously isolated vertex connected by a single edge to the path, or one of the leaves of
the trees of the forest, the other being possible connected to the path in the main tree), contradicting the
fact that the leaves are contained in T = {u, v}. So the path is a Hamiltonian one. □

Ex.NT: The worst-out-greedy algorithm for the MST problem provides us with a minimum spanning
tree. But is this a narrowest spanning tree ?
The idea is that the worst-out-greedy algorithm will be leaving globally light weighted edges to form the
tree. So if Tg is a tree from the worst-out-greedy algorithm and Tn is a supposedly narrower one, then
by denoting Tg’s heaviest edge eg, then all of Tn’s edges have smaller weight then eg. This means that in
the worst-out-greedy algorithm, they are all considered after eg. But since eg was included in Tg by the
algorithm, deleting eg disconnects the graph induced by the edges of lower weight than eg. However, this
graph is supposed to contain the tree Tn, since all of Tn’s edges have smaller weight then eg: in particular,
it’s connected ! Since we’ve arrived at a contradiction, we conclude that Tg is a narrowest tree, so that
the worst-out-greedy algorithm solves our problem. □

Ex.PST:
The idea is to use weights so that the total weight of the tree encodes the edges used and then solve an
MaxST problem. This can be done by assigning to edges e of color i the weight w(e) = (|E|+1)i−1, so the
code used is base |E|+1. If we solve the MaxST problem with these weights, the output tree will have the
desired property. Indeed, assume for contradiction that there is some i for which the tree uses less then
ti edges of color i, but it uses tj edges of color j for j > i. The weight of the tree is

∑
q∈[k]

τq(|E| + 1)q−1

where τq is the number of edge of color q used by the tree. We assumed that τq = tq for q < i and τq < tq

and we know that there is a tree for which τ ′q = tq for q ⩽ i. By bounding
∑
q∈[k]

(τ ′q − τq)(|E| + 1)q−1 =

(τ ′i − τi)(|E|+1)i−1 +

i−1∑
q=1

(τq − τ ′q)(|E|+1)q−1 ⩾ (|E|+1)i−1−
i−1∑
q=1

(|E|)(|E|+1)q−1 = 1 > 0, we see that

the output tree is not an MaxST, contradicting the nature of its construction. □

Ex.MaMu:
The symmetric difference Ma∆Mu form even cycles or paths who’s edges alternate between Ma\Mu and
Mu\Ma, for reasons explained in the proof of the characterisation of maximum matchings.
The paths can’t be augmenting ones for Mu, as it’s maximum, so each such path has at most one more
edge in Mu then it does in Ma.
Next, each path must have at least one edge of Ma, otherwise the path is a single edge of Mu, which could
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be added to Ma without breaking the matching property, contradicting maximality. So there are at most
|Ma| paths.
Thus there are at most 1× |Ma| more edges in Mu then in Ma.
Since the maximum of edges the matchings can have in common is |Ma|, since |Ma| < |Mu|, we can
conclude with |Mu| = |Mu ∩Ma|+ |Mu\Ma| ⩽ 2|Ma|. □

Ex.BOC: First off, we can prove this for a connected graph, as bipartitions of the connected components
of a graph can be merged to form a bipartition of all the graph.
So we may look at a spanning tree of the graph. The bipartition corresponds to the layers of the tree: we
choose a root and partition the vertices on the parity of their distance to the root.
It could happen that when adding the edges not in the tree, vertices of the same partition become adjacent.
But by the definition of our partitions, the cycle that this edge closes with the paths to the root in the
tree must be odd, a possibility which we’ve excluded. So with all the edges considered, this bipartition
remains valid. □

Ex.EV: Suppose an exposed u has no augmenting path in M , but we can augment M with augmenting
path P . If u had an augmenting path P ′ in the next iteration, meaning in matching M∆P , then P ′ has
to meet P , otherwise it would have been an augmenting path for u in M already. Let’s call v the first
vertex common to P and P ′. It can’t be an endpoint of P , because this would imply that P ′ restricted to
from u to v was an augmenting path in M , as v was still exposed in M . So v is in the interior of P . If we
then consider the path that follows P ′ from u to v and then then follows the path P to it’s endpoint in
the direction for which the edges at v are either both in the matching M∆P , or none of them are, then
in the initial matching M , this would be an augmenting path for u.
In all cases, we reach a contradiction, so u won’t have an augmenting path in the next iteration. Induc-
tively, we seen that u won’t have an augmenting path in any future iteration, so we may ignore it in the
future iterations of the algorithm. □

Ex.MD: Dominoes cover two adjacent tiles, so if we model the problem by a graph who’s vertices are
the finite subset of Z2 and who’s edges connect two vertices of from (n,m) which have one coordinate in
common and the other coordinates at distance 1 (for example (2,3) and (3,3) are connected), then a cover
by dominoes corresponds to a matching of this graph. So we’re actually dealing with a matching problem.
To see that the underlying graph is bipartite, notice that diagonal tiles can’t be covered by dominoes. So
we partition vertices (of from (n,m)) on whether the parity of their coordinates coincides or not and see
that all edges are in the cut of the partition, in the sense that neighboring vertices are in different partition
sets. Think of the coloring of a chess board. So we’re actually dealing with a bipartite matching problem.
□

Ex.BlBl: All vertices on the blossom are incident to an edge of the matching which is on the blossom,
except for the basis of the blossom. So the basis is the only vertex which can be incident to an edge of M
not on the blossom: when we shrink the blossom, all other edges incident to the blossom can’t be in M ,
so b is incident to at most one edge of M , which therefore maintains the matching property.
If an augmenting path of G/B starts or ends in b, this means that b is unmatched, so that the basis of the
blossom is unmatched too. Then we can always prolong this path until it reaches the basis, circling the
path in the direction that maintains alternation of edges until we arrive at the basis. This will produce
an augmenting path.
If an augmenting path of G/B has b as an inner vertex, the path passes through the basis and some other
point of the blossom. Again, we chose circle the blossom from the basis until we meet the other incidence
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vertex, circling in the direction such that the last edge on the blossom is one of M .
If an augmenting path of G/B doesn’t pass through b or the entry and exit vertex on the blossom is the
basis of the blossom, then no adjustments need to be made to the path for it to be augmenting in G. □

Ex.MCSA:
To show this, we’ll see that notation can have quite the impact on object studied. If we denote by
u(X,Y ) the capacity of the edges going from a vertex of X to one of Y , then we have the prop-
erty that u(X,Y ) = u(X ∩ Z, Y ) + u (X ∩ Zc, Y ) and similarly on Y ’s side. We can then decompose
the capacities into elementary pieces: u (A ∪B,Ac ∩Bc) = u (A ∩B,Ac ∩Bc) + u (A ∩Bc, Ac ∩Bc) +
u (B ∩Ac, Ac ∩Bc), u (A ∩B,Ac ∪Bc) = u (A ∩B,Ac ∩Bc) + u (A ∩B,B ∩Ac) + u (A ∩B,A ∩Bc),
u (A,Ac) = u (A ∩B,Ac ∩B)+u (A ∩Bc, Ac ∩B)+u (A ∩B,Ac ∩Bc)+u (A ∩Bc, Ac ∩Bc), and u (B,Bc) =
u (A ∩B,Ac ∩Bc)+u (Ac ∩B,Ac ∩Bc)+u (A ∩B,A ∩Bc)+u (Ac ∩B,A ∩Bc). We see that the terms of
the first two appear each exactly once in those of the last two decompositions, which have u (Ac ∩B,A ∩Bc)
and u (A ∩Bc, Ac ∩B) in addition. Since capacities are positive, this means u(A ∪ B) + u(A ∩ B) ⩽
u(A) + u(B).
Next, note that in general u(V \A) = u(A), as these vertices represent the same bipartition, so the same cut.
So u(A∩(V \B))+u((V \B)∪A) ⩽ u(A)+u(V \B) by submodularity, which says u(A\B)+u((V \B)∪A) ⩽
u(A)+u(B), and by u((V \B)∪A) = u(V \((V \B)∪A)) = u(B\A), we get the desired second inequality.

Finally, if A and B represent minimum s-t-cuts, then by noting that A ∪ B and A ∩ B represent s-t-
cuts (they contain s and not t), that by minimality u(A) = u(B) ⩽ u(A∪B), u(A∩B), and that assuming
that one of the inequalities is strict leads to u(A) + u(B) < u(A) + u(B), we conclude that A ∪ B and
A ∩ B represent minimum s-t-cuts as well. In case A is a s-t-cut and B is an t-s-cut, then A\B is an
s-t-cut and B\A is a t-s-cut,. Again, if A and B are minimum, then the second inequality implies that
A\B and B\A are too. □
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3 Complexity and how to handle it

3.1 Exact exponential algorithms

"Exact exponential algorithms" Fomim and Kratsch: 3.2, 6.2, 9.2

Directed Hamiltonian path:

Definition:

In the directed Hamiltonian path problem, we’re given a directed graph G = (V,E) and we
seek an algorithm to tell if the graph has a path P that uses every vertex of V .

We can reduce the problem to that of finding a directed Hamiltonian path from vertex s to vertex t, since

if we can solve this problem with an algorithm, we can run it on the
(
|V |
2

)
pairs of vertices of the graph

and return a positive answer when one of the iterations returns a positive one.
A first approach to this problem is to check the (|V | − 2)! permutations σ of the vertices V \{s, t} on
whether s, σ(v1), ..., σ(v|V |−2), t forms a path (contains the arcs between vertices).

The problem can be relaxed further to that of finding the number of a directed Hamiltonian s-t-paths
in the graph, as we can return a positive answer when this number is positive. This might seem more
difficult at first, but it’ll provide a faster algorithm for the initial problem!

The directed Hamiltonian s-t-paths are the s-t-walks of length |V | − 1 that contain all vertices vi. If
we know the number W of s-t-walks of length |V | − 1 in total, then finding the number of those using all
vi is equivalent to finding the number of those missing at least one of the the vi.
We’ll count these walks using inclusion-exclusion, which we state in the form most commonly found in

combinatorics texts: |A1 ∪ ... ∪Am| =
m∑
j=1

(−1)m−1
∑

I ⊆ [m]
|I| = j

| ∩i∈I Ai|

If we denote by Ai the set of s-t-walks of size |V | − 1 that contain vertex vi, then we can use | ∪i∈[m]Ai| =
m∑
j=1

(−1)m−1
∑

I ⊆ [m]
|I| = j

| ∩i∈I Ai|, and by letting | ∩i∈∅ Ai| =W ,

we get | ∩i∈[m]Ai| =
m∑
j=0

(−1)m
∑

I ⊆ [m]
|I| = j

| ∩i∈I Ai|, which is the number of directed Hamiltonian s-t-paths.

The only way this is useful is when there is a fast way of computing |∩i∈I Ai| for I ⊆ V \{s, t}, the number
of s-t-walks of length |V | − 1 using none of vertices of I, aka. the number of s-t-walks of length |V | − 1 in
the graph G\I.
The key point of our approach is that one can compute the number of s-t-walks of a graph G′ of length k
by considering entry (s, t) of Ak, where A is the vertex-adjacency matrix of G′. Since matrix multiplication
takes |V |3 multiplications, and we form k − 1 of them (so (k − 1)|V |3 multiplications), we can find the
number of s-t-walks of length |V | − 1 in |V |4 time.
Now, we can compute | ∩i∈I Ai| for all 2|V |−2 subsets I ⊆ V \{s, t} in time O

(
2|V |−1|V |4

)
and deduce the
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the number of a directed Hamiltonian s-t-paths via inclusion-exclusion.

This is better then the first approach, as 2|V |−2|V |4 = O(|V |−2)!). Indeed,
2|V |−2|V |4

(|V | − 2)!
=

|V |4

(|V | − 2)...(|V | − 5)
×

25 × 2|V |−7

(|V | − 6)!
, where the first terms are asymptotically constant and the last is bounded by 1, as all

2

k
⩽ 1 for k = 2, ..., |V | − 6.

Note however that this approach is not constructive: it doesn’t give us a directed Hamiltonian s-t-paths
if there is one, it just tells us that there is one, unlike the first approach.

Maximum cliques or independence sets:

Definition:

We consider a graph G = (V,E).
In the maximum clique problem, we seek a maximum size subset of vertices W ⊆ V such that all
pairs of vertices of W are linked by an edge, so ∀v, u ∈W, {v, u} ∈ E.
In the maximum independent set problem, we seek a maximum size subset of vertices W ⊆ V such
that no pairs of vertices of W are linked by an edge, so ∀v, u ∈W, {v, u} /∈ E.

The two are related as follows: one problem is equivalent to the other, but on G =

(
V,

(
V

2

)
\E
)

.

A brute-force approach would be to check all 2|V | subsets of V on being an independence set (in O
(
|V |
2

)
time) and keep track of the largest one. We’ll look for a more efficient way.

To find a maximum independence set in a graph, we study the properties of such sets. If v is in an
independence set W , then none of its neighbours are in W , by definition. Conversely, if a vertex v has
none of it’s neighbours in a independence set W , then it must be in the independence set, for otherwise
W ∪ {v} is a larger independence set.
This means that if we consider the closed neighbourhood N(v) = δ(v)∪ {v} of any vertex v, then there is
at least one u ∈W also in N(v), and for this vertex, N(u) ∩W = ∅.

This hints at a recursive way of finding a maximum independence set. Indeed, if we have found max-
imum independence set WG\N(u) for the graphs G\N(u) for all u ∈ N(v) for an initial vertex v, then the
largest among the set WG\N(u) ∪ {u} is a maximum independence set of G. These sets are independence
sets as the vertices of WG\N(u) shared no edge and can’t share an edge with WG\N(u), being part of
G\N(u). Since any maximum independence set W must contain a vertex in u ∈ N(v) by our previous
remark, and since W\u must be a maximum independence set of G\N(u) (it’s an independence set as a
subset of an independence set, and if there was a larger independence set U of G\N(u), U ∪ u would be a
larger independence set of G, contradicting maximality), we’re enumerating all candidates for maximum
independence set, the largest of which is our output.
For the base case of the recursion, if G\N(u) = ∅, we return an empty independence set of size 0.

We can prove that this algorithm terminates and with a correct output by induction on |V |. For the
base case |V | = 0 we return an empty independence set of size 0. The more satisfying base case |V | = 1
returns the only vertex and is again correct. If we know the algorithm works on graphs with less then n
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vertices, then for a graph with n+1 vertices, all (finitely many) recursive calls on graphs of form G\N(u),
which have at most n vertices, terminate correctly by induction. So the algorithm terminates, and cor-
rectly by the above discussion, showing the induction step.

At each step of the recursion, we have to compute a maximum in O(deg(v)), where v is the vertex
we choose to "branch" on. So far we’ve chosen v arbitrarily, but we’ll see that choosing v to be a vertex
of minimum degree helps, even if this requires to keep track of degrees and compute their minima at each
step.
So if T (n) denotes the worst case runtime of the algorithm on a graph of n vertices, which occurs on some
graph G. We have T (n) ⩽ P (n) +

∑
u∈N(v)

T (n − (deg(u) + 1)), where P (n) is the polynomial worst case

time required to compute the extrema at each step. By there worst case nature, P and T are increasing.
By choice of v as a minimum degree vertex, we have T (n− (deg(v) + 1)) ⩾ T (n− (deg(u) + 1)), so that
T (n) ⩽ P (n) + (deg(v) + 1)T (n− (deg(v) + 1)).
If we substitute this formula into itself, setting s = (deg(v) + 1), we get T (n) ⩽ P (n) + s(P (n −
s) + sT (n − 2s)) ⩽ (1 + s)P (n) + s2T (n − 2s)). Doing this until we reach T

(
n−

⌊n
s

⌋
s
)
, we get

T (n) ⩽ P (n)
(
1 + s+ ...+ s⌊

n
s ⌋−1

)
+ s⌊

n
s ⌋T

(
n−

⌊n
s

⌋
s
)
.

This is where Fomin and Kratsch or the paper they got this example from get sloppy. There is no efficient
way of bounding T

(
n−

⌊n
s

⌋
s
)

by a polynomial, as all we know is n−
⌊n
s

⌋
s ⩽ s and s depends on n in

a non-exploitable way...
We have to restrain ourselves to graphs such that min(deg(v) : v ∈ V ) ⩽ k for a constant k independent of
n. Then s ⩽ k, so that, by monotonicity and positivity, T (n) ⩽ (P (n)+T (k))

(
1 + s+ ...+ s⌊

n
s ⌋−1 + s⌊

n
s ⌋
)
=

(P (n) + T (k))
s⌊

n
s ⌋ − 1

s− 1
(when s > 1), where (P (n) + T (k)) has artificially been turned into a poly-

nomial in n. Since s ∈ {1, ..., k}, we have bounds T (n) ⩽ (P (n) + T (k))
(⌊n
s

⌋
+ 1
)

for s = 1 and

T (n) ⩽ (P (n) + T (k))sn/s. Since s 7→ sn/s achieves its maximum value en/e when k ⩾ 3, we have
T (n) ∈ O

(
(P (n) + T (k))en/e

)
, which is an improvement over brute force, as e1/e ≈ 1, 44 < 2.

The Held-Karp algorithm:
A travelling salesman has to visit n cities in a tour. Since he’s a scammer, he can’t return to a city after
having visited it, except for his hometown, which will forgive him after he visited all other cities. By this,
we mean that the salesman has to chose a cyle of cities, visiting each just exactly once, except for the first
one, which he visits exactly twice. Travelling from city i to city j incurs a cost dij ⩾ 0, if it is possible.
The problem is that of finding a cycle of all cities of minimum cost, if this is possible.

We can model this as a weighted graph and ask for a minimum weight Hamilton cycle. However, we
can reduce the problem to a complete graph on n vertices. Indeed, if G is the graph and d its weights,
then we can complete it to Kn, using weights w = 1+

∑
e∈EG

de for edges previously not in the graph. If we

then solve the problem, and find a solution with value greater then
∑
e∈EG

de, then the only way this could

have happened is if we used an edge that wasn’t in G. Since the cycle is minimum, we’ll then know that
finding a Hamiltonian cycle in G is impossible, as it would have value less then

∑
e∈EG

de, contradicting the

previous minimality.
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Travelling salesman problem (TSP):

For an complete graph Kn with edge weights d ⩾ 0, we seek a minimum weight cycle containing
all vertices of the graph.

The problem reduces to that of finding a minimum weight Hamiltonian path. Indeed, fix a vertex v. The
TSP cycle will use some edge {v, u}. Deleting that edge yields a minimum Hamiltonian v-u-path (if it
wasn’t minimum for the Hamiltonian constraint, we’d contradict optimality of the TSP cycle by closing
the smaller path to a Hamiltonian cycle with {v, u}). So by fining the minimum Hamiltonian v-u-path for
all u other then v, we can find a TSP cycle by taking the smallest weighted cycle among those obtained
by adding {v, u} to the paths.

We’ll try to find a minimum Hamiltonian v-u-path recursively. The problem will be that the is to "scale"
the Hamiltonian property to sub-problems. We can start by considering a minimum Hamiltonian v-u-path.
On it, we consider the predecessor p of u, and the subpath from v to p. The subpath has to be a minimal
v-p-path, for the property of containing all vertices except for u. If there was a ligther one, we could add
edge {p, u} to it to get a Hamiltonian v-u-path (since u wasn’t on the path already, and the subpath used
all vertices except u (for the Hamiltonian property)) of lesser value, contradicting minimality. Hence, if
for any p, we have a method to find all v-p-paths minimum for the property of using all vertices but u,
we can find the minimum Hamiltonian v-u-path as the path of minimum cost among the paths obtained
by adding {p, u} to the previous minimum paths, ranging over p.

Can you see a pattern emerging in the recursion ?
To find a minimum v-p-path PS,p using all vertices of a set S ⊆ V and no other vertices, who’s length
we’ll denote by DS,p, we note that it is among the paths of form PS\p,j ∪ {j, p} for j ranging in S\v,
since by splitting PS,p into PS\p,j ∪ {j, p} where j ∈ S is the predecessor of p on PS,p, we see that PS\p,j
must be minimal wrt. the property of using all vertices of a set S\p ⊆ V and no other vertices, for
similar arguments as before (otherwise, we can find a lighter path then PS,p for its defining properties,
contradicting its minimality). In fact PS,p will be the least weight path among PS\p,j ∪{j, p} for j ranging
in S\v, so that DS,p = min

j∈S\{v,p}
(DS\p,j + djp).

This holds if |S| ⩾ 3. The base case |S| = 2 is just DS,p = dvp. We see that the recursion progresses
in the sizes of the set S. We start with the base case |S| = 2 with DS,p = dvp, and for O(|V |) iter-
ations ranging over increasing |S|, we compute the DS,p and their corresponding paths by a minimum
DS,p = min

j∈S\{v,p}
(DS\p,j + djp) in O(|V |) time, using the DS\p,j values of the previous iteration. There

are at most 2|V | possible S ⊆ V that need be compute. So the Held-Karp algorithm can be bounded by
O
(
|V |22|V |

)
in time.
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3.2 NP-completeness

Beyond NP:
Some tasks are not verifiable in time polynomial in the input data, depending on what one considers to be
input data and a verification algorithm. A simple example of this phenomenon is the problem of deciding
if a set S ⊆ P ([n]n) (power set) is the set of permutations of [n]. Any algorithm based on checking if a
permutation σ is in S will have to make n! checks, which isn’t polynomial in n.
In general, enumeration tasks can be exponential in the input data, since the objects to enumerate are
exponential in the input data. This is the case for checking if a polytope has at least k vertices, since the
n-cube is defined by 2n half-spaces, and has 2n vertices. The enumeration of spanning trees falls in this
category too.

Non polynomial time reductions:
One can solve NP-complete problems with polynomial time algorithms. This may sound lie P=NPc, but
the key point is that the reduction isn’t polynomial. For example, on can solve SAT with graph search
algorithms, which are polynomial. To do this, we construct a binary tree so that each layer corresponds
to the choice of a truth assignment of of a variable, and add a target vertex related to the vertices of
the last layer if the truth assignment satisfies the instance of SAT. Then a path from the to of the tree
to the target vertex corresponds to a satisfying assignment. However, the graph has a number of nodes
exponential in the number of variables, and the computation of the edges required us to solve SAT in the
first place.

An interesting question for problems involving numerical values is weather the sign of these values af-
fects the difficulty of the problem.

Ex.PsP: We consider two versions of the partition problem: in the first, we’re given n positive inte-
gers ai ∈ N and in the second, we’re given n integers bi ∈ Z. In both cases, we seek to decide if there is
an I ⊂ [n] so that

∑
i∈I

ai =
∑
i/∈I

ai, or
∑
i∈I

bi =
∑
i/∈I

bi respectively. Show that one version allows to solve

the other.

The situation is entirely different for cut problems. The min-cut problem for positive capacities can
be solved in polynomial time, as we’ve seen in the chapter on flows, whereas the min-cut problem for
general capacities is NP-complete! Indeed, the problem is equivalent to finding a maximum cut in the
graph with opposite capacities, and this problem is NP-complete, as we’ll now show.

NP-completeness of Max-cut via Partition:
Max-cut is clearly in NP: given a bipartition of vertices of a graph, we can count in |E| iterations the
edges that belong to the cut, by checking the partition sets of their endpoints.
We’ll reduce an instance of the partition problem to a max-cut problem.
The partition problem asks, given numbers (ci)i∈[n], whether there is a bipartition of indices into S ⊆ [n]

and [n]\S such that
∑
i∈S

ci =
∑
i/∈S

ci. It’s NP-complete.

We can reduce it to a decision version of the max-cut problem with the following tricks. We consider
a complete graph on vertices [n], with edge weights wij = cicj , so that the value of the cut of the bi-

partition into S ⊆ [n] and [n]\S is V (S) =
∑

i∈S,j /∈S

cicj =

(∑
i∈S

ci

)(∑
i/∈S

ci

)
. Introducing the total sum
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C =
∑
i∈[n]

ci, we have V (S) =

(∑
i∈S

ci

)(
C −

∑
i∈S

ci

)
. Then, we can exploit the fact that x 7→ x(C − x) is

maximum in
C

2
(alone) together with the fact that the existence of an S for which

∑
i∈S

ci =
∑
i/∈S

ci implies

∑
i∈S

ci =
∑
i/∈S

ci =
C

2
(divide the total sum along S and apply equality to see it) to complete the reduction.

Indeed, the graph has a cut of value at least
C2

4
precisely when an S for which

∑
i∈S

ci =
∑
i/∈S

ci exists:

if V (S) =
C2

4
, the objective is maximum, which requires

∑
i∈S

ci =
C

2
=
∑
i/∈S

ci, providing the desired S,

and the converse is obtained by computing V (S) for an S with the partition property. This shows the
reduction, and therefore also max-cut’s NP-completness.

Ex.HypPath: Recall that a (loopless) directed hypergraph on vertices V has hyperarcs e ∈ H, where
e = (Te, He) for non-empty and disjoint Te, He ⊆ V , where Te is the tail and He the head of arc e. We can
try to generalise the notion of a path from a source-set S to a target-set F as follows: a superpath from
S to F is a finite sequence of hyperarcs e1, ..., en so that Te1 ⊆ S, Tej ⊆ S ∪i<j Hei for j ⩽ n and finally
F ⊆ S ∪i⩽n Hei . In words: we keep adding hyperarcs with tails in previously visited vertices, starting
from S, until all vertices of F have been visited. This is more of a generalisation of a walk than that of
a path, so we define an S-F -hyperpath to be a inclusionwise minimal S-F -superpath, in the sense that
deleting any subset of hyperarcs from it breaks the superpath property. We can give hyperarcs weights
w : H → Z.
Given a directed hypergraph (V,H), source-set S and target-set F and weight w : H → Z, show that the
task of deciding whether a hypergraph has an a path of total weight less then k is NP-complete.
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3.3 Input specification and randomisation

Probabilistic methods for algorithmic discrete mathematics, Probabilstic Analysis of Algoithms, Chapter
2, Chapter 13 and 10.2 Tardos Kleinberg: distinguish approximation algorithms and input specification.

Some tasks we showed to be NP-complete can be solved in polynomial time, if the input has an ad-
ditional particular structure, as we’ll see now. If we have a probability distribution over the inputs, we
can compute the probability of a polynomial time algorithm to terminate correctly, or even compute the
expected runtime of a worst-case exponential time algorithm that terminantes correctly, and hope this
expected time to be polynomial (which may happen when the distribution depends on the structure of
the input, so that exponentially high runtime occurs with exponentially low probability).

Maximum independent set on forests:
This is an example where we show how a difficult problem has an efficient solution on a cetrain class of
inputs. An idea for finding large indipendence sets is to add vertices of low degree, as this excludes a small
number of vertices, the neighbourhood, from being added to the independence set. In the case of forests,
we’re guaranteed to have leaves, which seem good for our idea. The key remark is that one can obtain a
maximum independence set containing a particular leaf of the forest!
Indeed, if we consider a maximum independent set S that doesn’t contain leaf l, then by maximality, it
must contain the unique neighbour v of l, as otherwise, we could add l to the set without violating inde-
pendence, contradicting its maximality. In this case, we can which to (S\v)∪ l and obtain an independent
set of equal, hence maximum size, that contains the leaf. So a maximum independence set containing all
leaves must exist.

We can then consider the recursive search of a maximum independence set explored in the "exact ex-
ponential chapter". We include a the leaf in S and solve the problem on the forest obtained by deleting
the leaf and its unique neighbour. The reason we delete the neighbour is to make sure that a maximum
independence set of this subgraph yields a maximum independence set of the initial forest, when we add
the leaf to it. Indeed, the only way that Independence could be destroyed is if the neighbour of the leaf
was in the maximum independence set of the subgraph, hence our reason for deleting it.
As base case of the recursion, we have isolated vertices or empty trees: in the first case, we add the isolated
vertices to the independence set.
The reason this recursion produces a maximum independence set is that for the maximum independence
set containing the leaf (that we know exists), the part that is in the subgraph must form a maximum
independence set of the subgraph for otherwise, we would have a larger one that we could add the leaf to,
obtaining an independence set of larger size then the maximum one, a contradiction.
Searching for a leaf can be done in O(|V ||E|) time, and since at each iteration, we delete 2 vertices, we
iterate at most |V |/2 times, so the runtime is in O

(
|V |2|E|

)
.

Bin packing for random bins:
We consider the bin packing problem in the following form: given n items with item i of volume vi ∈ [0, 1],
we seek the smallest number of bins k of volume 1 so that we can place items in bins according to
m : [n]→ [k], so that the bins don’t overflow, aka.

∑
{i:m(i)=j}

vi ⩽ 1 for all bins j.

We’ll give a deterministic algorithm for this problem. We will then analyse its expected output and ex-
pected runtime under the following probability distribution on the inputs: each vi is uniform on [0, 1] and
independent of the other vj . Note that this is not an approximation algorithm, and not a randomised one
either: all we do is analyse its behaviour under randomisation.
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The deterministic lower bound on the number of bins
n∑

i=1

vi ⩽ k now provides a lower bound on the

expected number of bins E(k) ⩾
n∑

i=1

E(vi) =
n

2
.

We’ll start our packing by preprocessing: we place each i with vi ⩾ α in a separate bin, for a parameter
α to be chosen later. By the binomial distribution, we expect nα items to fall in this category. We’ll now
try to fit the left-over medium sized items into bins, by pairing them up as follows. We first sort the N
(with E(N) = n(1− α)) remaining items by increasing volume x1 ⩽ ... ⩽ xN , and check if we can fit the
small i and the large N − i in a new common bin (if xi + xN−i ⩽ 1), which we do if possible, and place

them in two new individual bins otherwise, for i from 1 to
⌊
N

2

⌋
. If N is odd, we place item

⌊
N

2

⌋
+ 1 in

a new individual bin.

The expected number of bins needed in the second phase is at most 1 +

⌊N2 ⌋∑
i=1

1.P (xi + xN−i ⩽ 1) +

2.P (xi + xN−i > 1). With a lot of computation and probability theory and the fact that we sorted the

list, one can show that P (xi + xN−i > 1) ⩽
1

n
. This way, bounding P (xi + xN−i ⩽ 1) by 1, we get a

bound of 1 +
N

2
+ 2

N

2n
⩽

n(1− α)
2

+ 2. So the total number of bins to expect as output is at most

nα+
n(1− α)

2
+ 2 =

n

2
(1− α) + 2.

Preprocessing requires n checks, after which an expected amount of n(1 − α) volumes have to be sorted

and
n(1− α)

2
sums have to be computed and compared. So this algorithm runs in (expected) linear time.

57



3.4 Approximation algorithms

So for we’ve been trying to solve combinatorial optimization problems exactly. But for many purposes,
it’s satisfying enough to find feasible solutions with reasonably good objective value, if as trade-off we can
compute these approximate solutions efficiently.

For example, consider the problem of coloring the vertices of a graph so that no vertices joined by an
edge have the same color. We can consider the follwing "greedy" algorithm: order the vertices in some
way and color the vertices with a color/label in {1, ..., |V |} that is smallest among the colors not used on
the neighbours of the current vertex that came before in the ordering. For a given vertex v, the worst
case is that all its neighbours were ordered before it and received different colors, in which case we need
deg(v) + 1 colors at this stage at least. Therefore, this algorithm produces a (∆+1)-coloring in the worst
case, where ∆ = max(deg(v) : v ∈ V ).
This is an example of an algorithm that may not produce an optimal solution, but one with a quality that
can be estimated/bounded systematically. In what follows, we seek an even stronger seal of quality: we
want to know how well the algorithms solution compares to the optimal solution for the instance. This
might seem impossible to do without having a way of computing the actual optimal solution, but you’ll
see a large amount of examples in this section.
This is why we turn our interest to:

Definition:
An approximation algorithm for an optimization problem with attainable optimal value zopt > 0 is a
polynomial time algorithm that returns a feasible solution with objective value zapprox, such that there is
a constant or function of the input data α > 0, so that 1 ⩾

zapprox
zopt

⩾ α for maximisation problems and

1 ⩽
zapprox
zopt

⩽ α for minimisation problems.

We seek approximation algorithms with α close to 1, as this means that the approximate value we get is
almost optimal.

As a first example, we give a 2-approximation algorithm to the bin packing problem, introduced in the
introductory section of the integer programming chapter.
Greedy BPP heuristic:
We add the item to the first bin with unused space among those bins that can fit the item and add an
new bin if no bin can fit the item. This is known as the "first fit" or "greedy" heuristic.
The key fact is that this algorithm can’t terminate with more then two bins with less or equal then half ca-
pacity: the items of the latter bin could have been put in the first one, so there was no need to make a new

one. This means that for the volume Bi packed in bin bi and a number b of bins,
∑

ai =
b∑

i=1

Bi >
1

2
(b−1)

because for all i ⩽ b − 1, Bi >
1

2
. Reformulating and recalling the that optimal number of bins OPT

must contain all the volume, so that OPT ⩾
∑

ai, we get 2OPT ⩾ 2
∑

ai > b− 1 and by integrality of
the number of bins, 2OPT ⩾ b. The algorithm runs in polynomial times, as there are at most n bins and
we therefore check at most n bins in each iteration and recompute their left-over capacity once in such an
iteration: this is O(n2) runtime. So this is a 2-approximation algorithm.

Ex.SAT2: Give a 2 approximation algorithm for Max-SAT which runs in linear time. That is, find an
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algorithm that finds a truth assignment that satisfies at least half the clauses.

Ex:SteinerKcut: In the Steiner k-cut problem, we given a connected graph with edge weights w ⩾ 0,
and a set of vertices X called terminals. We seek a minimum weight set of edges who’s removal produces
k connected components, each of which contains at least one terminal. Consider the following heuristic:
build a Gomory-Hu tree of the graph and iteratively delete the cheapest edge so that two terminals that
were in the same component of the tree are now separated for k − 1 deletions. The union of the cuts
represented by these edges in the Gomory-Hu tree will be our output. Show that this is a k-cut and that

this algorithm is a
(
2− 2

k

)
-approximation algorithm.

Ex:KnapsackDensity:
Imagine a knapsack problem where the objects are liquids that you can take fractional amounts of. How
woould you solve th problem in that case ? Use this to create an approximation algorithm for the standard
knapsack problem.

Is the bound tight?
An interesting question, when we have a α-approximation algorithm is whether α is the best possible ratio
truely attained by the algorithm. Recall that α is obtained from bounds in the theoretical analysis of the
algorithm. Perhaps, a better analysis may have given a tighter ratio ?
In some cases, we can show the the analysis is the best by giving an instance in which the bound is
tight. For example, consider the greedy approach to maximum matching, which yields a maximal match-
ing, that is at least as large as half of a maximum matching. If we consider the bipartite graph on 4
nodes u1, u2, v1, v2 with edges {u1, v1}, {u1, v2}, {u2, v1}, and an ordering so that the greedy algorithm
selects edge {u1, v1} first, then we get a maximal matching of size 1, whereas the maximum matching
{u1, v2}, {u2, v1} has size 2, so that the bound is tight in this case.
This does not mean that we can’t find an approximation algorith with a better α for the problem, but
only that the current algorithm can’t perform better then with a ratio of α.

Next, we refine the heuristic, to get an approximation algorithm this a ration depending on the input
data.
Sorted greedy BPP heuristic:
First, we sort the items from least volume to most. Then we use the previous first-fit heuristic.
The algorithm is polynomial in time, as the last one was and sorting is polynomial. Let’s see what this
small modification of sorting allows us to say.
The last item has volume an = max

i
(ai). We may assume that no item has value 1 as otherwise it’s

clear that it needs a bin to its own, so an < 1. By the first-fit heuristic, an can’t have been placed
in previous bins: otherwise, there still was enough space in the previous bin to accommodate an and
in particular all the ai in the last bin, as ai ⩽ an, so that the first-fit rule was violated. This means
an > 1 − Bi for the volume Bi used by bin bi, for all but the last bin. Thus, for b output bins, sum-
ming the inequalities gives (b − 1)an > (b − 1) −

(∑
ai −Bb

)
and by rearranging and bounding we get

1

1− an
OPT ⩾

1

1− an

∑
ai > (b − 1) and by integrality ⩾ b. So this is a

1

1−maxi(ai)
-approximation

algorithm: one with a ratio depending on the input data.
For items with small weight (less then 1/2), this ratio is better then the previous one.
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Not all heuristics turn out to give approximation algorithms !
Example of an algorithm that isn’t an approximation algorithm:
Recall the vertex cover problem introduced in the section on LP relaxations and total unimodularity. In
it, we look for a set of vertices of smallest size such that all edges have at least one endpoint in that set.
A greedy heuristic would be to add the the vertex of highest degree to the cover, then proceed iteratively
on the graph with this previous vertex deleted. It turns out that this isn’t an approximation algorithm
for a constant α. To see this, we’ll construct a family of graphs for which the ration of the greedy solution
to the optimal one gets smaller and smaller, preventing the existence of a universal constant α bounding
this ratio from below for all graphs that can be inputs to the algorithm.
This family of graphs are bipartite graphs with bipartition into L and R. The set L has r vertices, for a
parameter r, and the set R can be subdivided into subsets Ri where there are

⌊r
i

⌋
.

We number the vertices lj of L from 1 to r and those from Ri as rik for k from 0 to
⌊r
i

⌋
− 1. We connect

rik to lk, lk+⌊ ri ⌋, lk+2⌊ ri ⌋, and so on until lk+(i−1)⌊ ri ⌋. This way rik has degree i. To see that deg(lj) ⩽ r,
note that for all i, there’s at most one rik connected to lj , so that we get the result by summing this of
the r sets Ri. We prove that there’s at most one rik connected to lj : otherwise, rik and riq are connected
to lj , meaning k+ x

⌊r
i

⌋
= j = q+ y

⌊r
i

⌋
for some x, y ⩽ i− 1, so that

⌊r
i

⌋
divides k− q ∈]−

⌊r
i

⌋
,
⌊r
i

⌋
[,

so that k − q = 0. In this graph L and R are covers.

For such graphs, the greedy algorithm could choose rr,0 as first node instead of a node from L, since
it also has degree r. By deleting it from the graph, all the nodes of L loose an egde, so that the new upper
bound on the degrees of L is r − 1. Next, the greedy algorithm could choose rr−1,0 as next node, and
it’s deletion lowers the upper bound on the degrees of L is r − 2 since all nodes from L have at most one
neighbour in Rr−1 and those that did have one have lost their neighbour after deletion. These two facts
are maintained after selection and deletion of all nodes in an Ri, so that the greedy algorithm could select
all of R, which is a cover.

This cover has size ALG =
r∑

i=1

⌊r
i

⌋
⩾

r∑
i=1

(r
i
− 1
)
= r

r∑
i=1

1

i
− r ⩾ r

(
r∑

i=1

1

i
− r

)
∼ r log(r).

So if this was an α-approximation algorithm, then 0 < α ⩽
OPT

ALG
⩽

r

r log(r)
=

1

log(r)

r−→
∞

0 as OPT ⩽ r

since L is a cover of size r. By taking rn = n, we construct a sequence of graphs forcing the approximation
ration to be closer and closer to 0, contradicting its positivity.

The question of how good an approximation algorithm can be is deeply related to the question P vs. NP .
If we find an approximation ratio of 1, we’ve actually solved the problem in polynomial time. In particular
cases, we can make better statements of this form. If one assumes that P ̸= NP , then these statements
provide lower/upper bounds on the possible approximation ratios a problem can have.

Example of an bound on the possible ratio of an approximation algorithm:
We’ll show BPP solves the following NP-complete problem, called PARTITION: for weights ai in a finite
index set, can one partition this index set in two so that the sum of the weight over each partion set are
equal ?

To solve PARTITION with BPP, we set ai =
2ci∑
cj

which is in [0, 1] when all ci ⩽
1

2

∑
cj . If the latter

isn’t the case, then there are no partitions, since such a partition has cost
1

2

∑
cj , and one of the partition

would have to contain the ci >
1

2

∑
cj .
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If the ai can be packed into less then 2 bins, then
∑

ai ⩽ 2 but since
∑

ai =
2
∑
ci∑
ci

= 2 the bins are full,

and in particular each contains an equal amount of volum so that
∑
i∈b1

2ci∑
cj

=
∑
i∈b2

2ci∑
cj

which simplifies

and gives partition b1.
Conversely, if such a partition exists, by packing the items according to this partition, which is possible

as
∑
i∈S

ai =
2∑
cj

∑
i∈S

ci =
2∑
cj

∑
cj
2

= 1, we need exactly two bins.

So BPP solves PARTITION and is therefore NP-hard.

If P ̸= NP , there cannot be an approximation algorithm with ratio smaller then 3
2 for BPP. If there

was, the solution ALG would verify
3

2
OPT ⩾ ALG, and since ALG > 3 ⇔ OPT > 2 and by integrality

and contraposition ALG ⩽ 2 ⇒ OPT ⩽ 2, the approximation algorithm would be a polynomial time al-
gorithm that decides if items can be packed in less then 2 bins, thereby solving PARTITION. This would
mean P = NP .

TSP inapproximability:
In the previous example, we showed that unless P=NP, there is a lower bound on the possible approxima-
tion ratio for approximation algorithms to certain problems. We now give an even more extreme example:
we’ll show that the TSP can’t be approximated by approximation algorithms, unless P=NP.

We’ll assume that we have a α-approximation algorithm for TSP (with α ⩾ 1) and use it to solve the NP-
complete Hamiltonian circuit problem with it. Recall that this problem asks to find a tour (visit all vertices
exactly once) in a graph G = (V,E). We imitate the redaction of TSP to the Hamiltonian circuit problem:

for a given instance of the latter, we construct a TSP instance by setting weights wuv =

{
1 : {u, v} ∈ E
2 + q : else

for some constant q ⩾ 0 which we’ll choose later to make the whole thing work. The idea of this reduc-
tion is to penalise the use of edges not in G by the TSP solution. Indeed, G has a Hamiltonian circuit
precisely when the optimal TSP solution has value |V |: any Hamiltonian circuit must have |V | edges
as it visits all vertices once, and the edge weights are all greater then 1, so any TSP solution has value
at least |V |. If a Hamiltonian circuit exists in G, then it’s a solution to the TSP with value |V |, so it’s
optimal. Conversely, the TSP has optimal value strictly greater then |V |, no Hamiltonian circuit can exist.

We’ll now choose q depending on α to show that we can decide the latter question with an α-approximation

algorithm. For the output value A of such an algorithm,
A

OPT
⩽ α. If the tour given by the algorithm

has value |V |, then its a Hamiltonian tour, and otherwise, it uses at least one edge of weight 2+ q, so that

(|V | − 1).1 + 2 + q ⩽ A. This means
(|V | − 1) + 2 + q

OPT
⩽

A

OPT
⩽ α so for q = (α − 1)|V | > 0, we have

1 + α|V |
OPT

⩽ α⇔ 1 ⩽ α(OPT − |V |)⇒ OPT > |V |, so that there can’t be a Hamiltonian circuit.

Approximation schemes:
Sometimes, it’s possible to get a family of approximation algorithms who’s approximation algorithm gets
increasingly good (close to 1). This is known as an approximation scheme. Possible trade-offs in this
situation is that the runtime increases as the approximation ratio decreases, or that one of the parameters
of the problem appears exponentially in the runtime.
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Definition:
An approximation scheme for an optimization problem with optimal value OPT is a family of polyno-
mial time (in the problem input data) algorithms indexed by n ∈ N that return a solution to the problem
with value ALGn, so that ALGn ≥ (1 − 1

n)OPT for maximisation problems and ALGn ≤ (1 + 1
n)OPT

for minimisation problems.

A fully polynomial time approximation scheme is an approximation scheme who’s algorithms are
polynomial time in the problem input data as well as the index n.

We give an example of an approximation scheme for a job scheduling problem. This scheme will be based
on a first algorithm for job scheduling, which we present now.
In this job scheduling problem, we’re given m machines and n jobs to be performed on them. The prob-
lem consists in finding m lists, where the list of machine i lists the jobs to be performed on it in the
order specified by it. Each job j has requires an amount pj of time to be processed. If li is the list of

machine i, then the time needed for it to process its jobs is
∑
j∈li

pj . The makespan M = max
i

∑
j∈li

pj


of a schedule is the time necessary for all jobs to be processed, and it’s the quantity we#d want to minimise.

We construct an approximation algorithm for this problem using the local search heuristic: we start
with a given schedule (for example, all jobs on one machine) and improve it to a next schedule, until no
more improvements can be done.
In our case, this improvement corresponds to finding a last job j to be processed and checking if we can
lower the makespan by letting it be processed by a different machine. This corresponds to the existence of
a machine i so that

∑
j∈li

pj < M − pj . In fact, we’ll search for the machine that finishes earliest, with total

processing time N = min
i

∑
j∈li

pj

, and check if N < M − pj . If it is the case, we make a new schedule

in which j is processed by the machine that previously finished earliest. We keep performing these im-
provements, until the conditionN < M−pj is violated, at which point we stop and return the last schedule.

Before investigating if this algorithm ever terminates, we investigate its raison d’être: is it an approx-
imation algorithm ?
At termination, if the last job to be processed is j, M − pj ⩽ N so that all other machines need at least a
time of M − pj to finish. This means that at this stage, the machines have together dealt with m(M − pj)
of the total processing time, with none of them being done (or just finishing at that exact moment), so that

m(M−pj) ⩽
∑
j∈[n]

pj , as
∑
j∈[n]

pj is the time necessary to do all jobs. So M ⩽ pj+
1

m

∑
j∈[n]

pj . We can bound

these last two terms of the right side of the previous inequality by the minimum makespan over all schedules,
so that this shows that we’re dealing with a 2-approximation-algorithm. Indeed, since j must be processed

in an optimal schedule of makespan M∗, we have pj ⩽ M∗, and by writing
∑
j∈[n]

pj =
∑
i∈[m]

∑
j∈l∗i

pj

 for

an optimal schedule given by lists l∗i ,
1

m

∑
j∈[n]

pj ⩽ M is due to the fact that the average of a sequence is

less then it’s maximum.
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We now turn to the question if the algorithm terminates, and if so, in polynomial time. This usually
requires more work for local search algorithms. To answer the question, we point to the particular choice
we made during the improvement steps. By selecting the machine that finished earliest to do the last
processed job, it turns out that we’re assuring that this job won’t be rescheduled to another machine ever
again by the algorithm. This means that after n iterations, the algorithm must terminate. To see this,
we first not the the earliest completion time of a machine Nk increases (not necessarily strictly) with the
number of iteration k. Indeed, the machine that finishes in Nk gets the additional pj , the machine the
finishes in Mk now finishes in Mk − pj > Nk, and all other machines finished in time ⩾ Nk by definition
of Nk, so Nk+1 ⩾ Nk. With this in mind, if job j has been rescheduled to machine i in iteration k, then if
it were rescheduled to machine y in a later iteration q > k, then this would mean that Mq = Nk + pj (due
to how we choose j in the iteration) and Mq − pj > Nq, implying Nk > Nq. This contradicts the fact that
Nk increases with the number of iteration k !

We now turn to our approximation scheme.

To motivate it, recall the bound on the makespan M ⩽ pj +
1

m

∑
j∈[n]

pj we previously obtained. If we could

relate the processing time pj of the last job to be executed to the average processing time per machine
1

m

∑
j∈[n]

pj , say with a bound of form pj ⩽ α
1

m

∑
j∈[n]

pj , then we can bound M ⩽ (1 + α)
1

m

∑
j∈[n]

pj . We

can then conclude as before, by the fact that the optimal makespan must be larger then the the average
processing time per machine to obtain a (1 + α)-approximation algorithm.

How could we obtain a bound of type pj ⩽ α
1

m

∑
j∈[n]

pj , for small α ?

For α =
1

k
with k ∈ N, if pj ⩽

1

km

∑
j∈[n]

pj , then job j must have processing time much below the aver-

age. We can artificially make sure that such a job gets sorted last by partitioning jobs into short jobs

S =

j : pj ⩽ 1

km

∑
j∈[n]

pj

 and long ones L =

j : pj > 1

km

∑
j∈[n]

pj

 and doing the following. We first

schedule the long jobs in some way and then we add all short jobs to a machine and apply the local search
algorithm we described in the previous paragraphs. If the last job to be scheduled is a short job, we obtain
the desired conclusion. Otherwise, the last job scheduled is a long job. To handle this case, note that we
can’t achieve a lower makespan with only the long jobs then we can with all the jobs (in a schedule for
all jobs, ignore the short jobs: this lowers the makespan and produces a schedule for long jobs). So in the
case that the last job scheduled is a long job, if the makespan of this instance was lower then the best
achievable one for long jobs only, we could conclude that this makespan is optimal for the schedule over
all jobs. Since the local search algorithm only lowers the makespan, we can guarantee this if the way we
scheduled the long jobs is an optimal one. Luckily for us, there can’t be too many long jobs: |L| ⩽ km
(as otherwise, the total processing time of the long jobs exceeds that of all jobs). There are therefore at
most mkm schedules that can be produced (one choice of machine per long job) and we can find the best
one by brute force comparison.
In conclusion, this produces an approximation scheme for this job scheduling problem for a constant
number of machines. If the number of machines m is considered as variable input data, this algorithm
doesn’t run in polynomial time, due to its first phase. Finally, even if we consider the number of machines
constant, this isn’t a fully polynomial approximation scheme, as the runtime is exponential in k.

Randomized approximation algorithms:
Using random number generators, we can create randomised algorithms. These algorithms use random
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number generators to get (pseudo-)random numbers that are used in the algorithm. The output of the
algorithm is therefor random as well. To analyse such algorithms, we make assumption on the distribution
of the random number generators and compute the expected value of the output. In particular, we’re
interested in:

Definition:
An randomised approximation algorithm for an optimization problem with attainable optimal value
zopt > 0 is a polynomial time algorithm that returns a solution that is feasible for the problem with a
certain probability greater then p and that has expected objective value E(zapprox), such that there is a

constant or function of the input data α > 0, so that 1 ⩾
E(zapprox)

zopt
⩾ α for maximisation problems and

1 ⩽
E(zapprox)

zopt
⩽ α for minimisation problems.

We want both α and p to be simultaneously close to 1.

Here’s a basic first example, in which p = 1, so that all output solutions are feasible for the problem:
Randomised Max-cut:
In the max-cut problem, we seek a partition of the vertices V of a graph into sets A and B so that the
weight for the cut

∑
u∈A,v∈B,(u,v)∈E

wuv is maximum, for given edge weights wuv.

It turns out that choosing the partition at random yields a descent approximation.

For each node we include it in the A or B at random, with probability
1

2
each, indipendently for all nodes.

If Xuv is the random variable indication if (u, v) is in the cut and W =
∑
e∈E

weXe the random variable

representing the weight, the the expected weight is E(W ) =
∑
e∈E

we

(
1

2

)
because the probability that

(u, v) is in the cut is that of (u ∈ A ∩ v ∈ B) ∪ (v ∈ A ∩ u ∈ B), which is
1

2
.

The maximum cut of value OPT must have OPT ⩽
∑
e∈E

we so that 2E(W ) ⩾ OPT . Since in this algo-

rithm we use a random number generator |V | times, this is a linear time algorithm. So this is a randomised
2-approximation algorithm.
Ex.Max-k-cut: In the Max-k-cut problem, we partition the vertices into k ⩽ |V | sets and consider
the total weight of the edges with endpoints in different partition sets: the goal is to find the partition
maximising this sum. Find a randomised approximation algorithm for this problem.
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3.5 Parallel/distributed algorithms

We consider the approach of solving hard problems with brute force or with known efficient exponential
time algorithms by increasing computational power. The problem here is that not everyone who needs to
perform these computations has a super-computer at disposal. An idea is to use multiple machines to do
the job. Users can rent their computers computing power for periods in which they don’t require it for
themselves. The problem is then the following: how do we efficiently share the computational task ?
A parallel algorithm for a problem is a algorithm that splits the problem into multiple sub-problems, where
each subproblem is to be solved independently of the others, using no or little communication between
machines, and finally merges the result of the subproblems to find an exact or approximate solution to
the initial problem. Generally, such algorithms are based on a divide and conquer heuristic.

A toy example for the Knapsack problem:
For illustrative purposes, we’ll give a very basic example for the knapsack problem. We have k machines
at disposal, and assume that for n items i of weight wi and value vi, and capacity W , the weights are

sufficiently small, wi ⩽
W

k
, and can be split evenly among machines, in the sense that k|n.

We split the items among the k machines in some way, be partitioning [n] into the Sj for j ∈ [k], where
|Sj | = k. Machine j will be told the items of Sj , they’re weights and values, as well as W . It will then solve

the knapsack problem for the items of Sj with capacity
W

k
exactly, say with the dynamic programming

algorithm in time O
(
nW

k

)
. It returns solution set S∗

j ⊆ Sj to us, and our solution will be S∗ = ∪j∈[k]S∗
j ,

which is feasible since
∑
j∈[k]

∑
i∈S∗

j

wi ⩽
∑
j∈[k]

W

k
=W .

We’ll now estimate the value of S∗, when compared to the optimal value of the problem. For an optimal
set of items So, we note that v(Sj) ⩾ v (Sj ∩ So) (assuming positive values) and that v

(
S∗
j

)
⩾ max

i∈Sj

(vi) ⩾

1

k
v(Sj) since the item attaining maximum value in Sj is feasible for the subproblem when taken on its own,

since for all wi ⩽
W

k
, and v

(
S∗
j

)
is optimal for the sub-problem, and the lasi inequality is max-over-mean.

Therefore, v
(
S∗
j

)
⩾

1

k
v (Sj ∩ So), so that v (S∗) ⩾

1

k
v (So) by summing over the partition sets. We see

that our algorithm is a
1

k
-approximation algorithm.

Parallelisation can now be seen from the fact that the total runtime of the algorithm is O
(
nW

k

)
. This is

because the machines solved their subproblem in parallel. Only if we performed this algorithm sequentially

on a single machine would the runtime have been O
(
k
nW

k

)
= O(nW ). Note also that in this example,

no communication between machines was necessary. We can therefore get a solution to the knapsack
problem that is half as good as the optimal one, in half the time, for example.
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3.6 Solutions

Ex.PsP:
If we can solve for weights in Z we can in particular solve for weights in N ⊂ Z.
For the converse, notice that for N(J) : {i ∈ j : bi < 0}, we can rewrite

∑
i∈I

bi =
∑

i∈[n]\I

bi as
∑

i∈I\N(I)

bi −∑
i∈N([n]\I)

bi =
∑

i∈([n]\I)\N([n]\I)

bi −
∑

i∈\N(I)

bi, where all terms are positive. So the existence of a par-

tition for general signs implies the existence of one for the problem on the weights |bi|: we set it as
J = (I\N(I)) ∪ N([n]\I). Conversely, If we solve the problem on |bi| by

∑
i∈I
|bi| =

∑
i∈[n]\I

|bi|, then with

the same trick we get
∑

i∈I\N(I)

|bi| −
∑

i∈N([n]\I)

|bi| =
∑

i∈([n]\I)\N([n]\I)

|bi| −
∑

i∈\N(I)

|bi| which after distributing

the sign and noticing that bi = −|bi| for i ∈ N([n]), means
∑
i∈J

bi =
∑
i/∈J

bi.

Ex.HypPath:
We can check that a sequence of vertices is a S-F -hyperpath in polynomial time by checking Te1 ⊆ S,
Tej ⊆ S ∪i<j Hei for j ⩽ n and F ⊆ S ∪i⩽nHei in time O(n|V |), and checking minimality with a bit more
work. We’ll show that the hyperpath is minimal if the deletion of a single hyperedge breaks the superpath
property. So we can check the superpath property for n paths obtained by deletion of an edge, leading to
a S-F -hyperpath check in O

(
n2|V |

)
.

If a subset of indices J ⊊ [n] formed an S-F -superpath, the the edges of [n]\max([n]\J) would form an
S-F -superpath, where the required properties of hyperedges stem from the nature of (ei)i∈[n] or from that
of (ei)i∈J .
Now, we reduce the problem to a known NP-complete one.
We reduce the problem to minimum set cover, which is NP-complete. In a minimum set cover instance,
we are given a set A and a collection of m subsets Ci ⊆ A (such that A ⊆ ∪i⩽mCi) and the task is to
decide if there are sets Ci from an index set I ⊆ [m] such that |I| ⩽ k, so that A ⊆ ∪i∈ICi. We start
by building a dihypergraph with vertices [m] ∪ A and edges ({i}, Ci). Next, we introduce a source s and
a target t. We connect s to [m] with edges of form (s, i). For the reaching of target t to correspond to
a cover of A we can make use of the requirement that all tail-vertices of a hyperarc of a hyperpath must
be visited before the hyperarc may be used. By adding hyperedge (A, {t}), an s-t-hyperpath must have
visited all of A before using the final edge, which is necessarily (A, {t}). It starts with some edges of form
(s, i), then uses edges of form (i, Ci) for i ∈ I for some I ⊆ [m], and finishes in (A, {t}). By inclusion
minimality, only edges (s, i) for i ∈ I are present, as they are necessary for (i, Ci), and can be deleted
without affecting the hyperpath property, if (i, Ci) isn’t used.
Then I is a cover, A ⊆ ∪i∈ICi, as A = T(A,{t}) ⊆ S ∪i⩽n Hei so that the ei of form ({i}, Ci), who’s union
is the only part of S ∪i⩽n Hei that can contain A, have A ⊆ ∪i∈IHei . If we give edges (s, i) weight 1 and
all other edges weight 0, the weight of the hyperpath is |I|. So finding a hyperpath with |I| ⩽ k provides
a set cover.
Conversely, if I is a set cover, then ((s, i))i∈I , ((i, Ci))i∈I , (A, {t}) is a s-t-hyperpath of weight |I|, as edge
(A, {t}) may be used since A ⊆ ∪i∈ICi ⊆ {s} ∪ I ∪i∈I Ci.

Ex.SAT2:
We start by picking a variable in the first clause, say x1, and count the number of times it appears as x1
and ¬x1 in the clauses, starting from clauses 1 to m. Once we encounter a clause that contains neither x1
or ¬x1, we pick a variable x2 in it, and count the appearances of x2 and ¬x2 in the clauses in which x1
or ¬x1 don’t appear. In general, if we encounter a clause that doesn’t contain literals x1 to xk, we select
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a variable xk+1 in it and count the appearances of xk+1 and ¬xk+1 in the clauses in which none of the
literals x1 to xk appear. We stop when all m clauses have been considered. So we end up with at most m
literals x1 to xm, in m considerations.
Finally, we set xi = true if the number of xi is greater then that of ¬xi, and xi = false otherwise, and
output this truth assignment. Since we made at most m comparisons, the total runtime is O(m), aka
linear time.
If we partition the clauses into those C1 having literal x1, those C2 not having x1 but having x2, those
C3 not having x1 and x2 but having x3, etc., then our outputted truth assignment has at least half of the
clauses of C1 true, at least half of the clauses of C2 true, etc. This is because the clauses of Ci contain
either xi or ¬xi and we chose the truth assignment of xi so that the majority (which is always more then

half in a dichotomy) is true. Thus, the total number of true clauses is ⩾
∑
i⩽m

|Ci|
2

=
m

2
, as desired.

Ex:SteinerKcut:
To see that the output is a k-cut, recall the property of Gomory-Hu tree T , that the cut associated by
deleting e is represented in G by the vertices of the components of T\e. At each iteration, a component
C of the tree is split into disjoint halves C1 and C2 by deleting an edge in them, so that both halves
contain terminals, for otherwise the edge deletion wouldn’t have separated terminals. The edges of the
cuts represented by C1 can be partitioned into those leading to C2 and those leading into V \C, the latter
of which are already in the union of the previous cuts, since C was obtained by a previous split. So only
the edges between C1 and C2 are added to the union of cuts and they separate C1 and C2 in C. Therefore
we get a k-cut in the end.
We consider an optimal k-cut with edges A and components Vi for i ∈ [k]. Note that the edges of A are all
part of exactly two cuts represented by two Vi, corresponding to the components of the edges endpoints,
conversely, all edges Ai of a cut represented by Vi are part of A, as they lead to some vertex of some Vj .
Therefore 2w(A) =

∑
i∈[k]

w(Ai) from double-counting. The point of considering the Ai is that we can relate

them to the Gomory-Hu tree. To do this, we will consider arbitrary terminals t1, ...tk of V1, ..., Vk, consider
paths from ti to tk for i ⩽ k − 1 in the Gomory-Hu tree, and pick edges ei on these paths that are the
first to have endpoints in two partition sets (one of them being Vi, as we start the path in Vi). If we write
ei = (ai, bi) for ai ∈ Vi, and if we notice that the edges of Ai form in particular a ai-bi-cut (ai ∈ Vi and
bi /∈ Vi), then by definition of a Gomory-Hu tree, w(Ai) ⩾ c(ai, bi) = c(ei) where c are the Gomory-Hu
weights, aka. the values of minimum cuts of the adjacent vertices.
Next, we will relate these edges to those we selected from the Gomory-Hu tree by our algorithm. We’ll
show that for the ith edge fi selected in our algorithm, we have c(fi) ⩽ max

j⩽i
(c(ej)). First, note that the

ei are different from one another: otherwise, if ei = ej , the paths from ti and tj to tk would meet, latest
at an endpoint of ei = ej , but by definition of our paths, this would mean that the endpoint is inparition
sets Vi and Vj which are supposed to be disjoint. Now, if we had c(fi) > max

j⩽i
(c(ej)), then after having

removed the i− 1 edges of f1, ..., fi−1 from the tree, there must be an edge among the i ones e1, ..., ei that
is different, say ej ̸= fq for all q ∈ [i− 1]. Now since c(fi) > max

j⩽i
(c(ej)) ⩾ c(ej), we contradict our choice

of fi as a minimiser if ej separates two previously unseperated terminals. To see that this is indeed the
case, note that removing the e1, ..., ei separates the tj⩽i from tk. But if two tj and tq where still connected,
since this path, together with those to tk would contain a cycle, which is impossible, this path has to split
into two disjoint subpaths that are also subpaths of the paths to tk. EXPLAIN MORE. This will lead to
a contradiction when we consider the common ancestor to paths to tk, which will be in the supposedly
disjoint Vj and Vq. In conclusion, removing the e1, ..., ei creates i + 1 components each with a terminal,
so that.... god damn this paper and this proof.
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Ex:KnapsackDensity:
In the fractional setting, we can consider the value density of the item di =

vi
wi

, where vi is the value and

wi the weight of object i. If we take mass xi of item i, we get value xidi. To get the greatest value, we can
order the densities so as to have d1 ⩾ ... ⩾ dn, take the most mass of 1, then the most of 2, etc. until the
knapsack is full. This is optimal because taking mass from any other item leaves us worse of then taking
the same mass from an available better item.
To get an approximation algorithm for the general knapsack problem, we take the items in decreasing
order of density d until the knapsack is full, say at item j, so that

∑
i∈[j]

wi ⩽W and wj+1+
∑
i∈[j]

wi > W . To

get an approximation algorithm, we seek comparisons with an optimal choice of items, which we’ll denote
by S. We’ll compare vj+1 +

∑
i∈[j]

vi to
∑
i∈S

vi. This is equivalent to comparing
∑

i∈[j+1]\S

vi and
∑

i∈S\[j+1]

vi

(we exclude common items).
We have di ⩾ dk for i ∈ [j + 1]\S and k ∈ S\[j + 1], and also

∑
i∈S

wi ⩽ W . Now with
∑

i∈[j+1]\S

vi =

∑
i∈[j+1]\S

diwi ⩾ dj

 ∑
i∈[j+1]\S

wi

 > dj

W − ∑
i∈S∩[j+1]

wi

 ⩾ dj

 ∑
i∈S\[j+1])

wi

 =
∑

i∈S\[j+1]

vi, we seen

that vj+1+
∑
i∈[j]

vi ⩾ OPT . This implies that one of vj+1 or
∑
i∈[j]

vi must be greater then
OPT

2
(otherwise,

summing the two resulting inequalities contradicts vj+1+
∑
i∈[j]

vi ⩾ OPT ), so taking the maximium among

vj+1 or
∑
i∈[j]

vi yields a
1

2
- approximation algorithm for knapsack.

Ex.Max-k-cut:
We attribute the vertices to one of the partition sets independently with uniform probability of 1

k . The
probability of a given edge then being in the cut is that of having its vertices in different partition sets. The
opposite of the latter event is easier to find: for a given partition set, the probability that both endpoints

are in it is
1

k2
, and summing over the different sets yields

k∑
i=1

1

k2
=

1

k
. So the probability that the edge is

in the cut is 1− 1

k
, so that the expected weight of the cut is 1− 1

k
times the total weight over all edges,

which is less then 1− 1

k
times the value of the maximum cut. Therefore we get a

(
1− 1

k

)
-approximation

algorithm for max-k-cut.

68



4 Parametrized and exact exponential algorithms

With "param..." book in Algo folder

Parametrized algorithms can be described as efficient algorithms for the decision version of an optimiza-
tion problem, in the sense that runtime is polynomial in the instance data, but may be exponential in the
objective value (the "parameter") data. We present some techniques for producing such algorithms.

4.1 Kernelisation

In kernelisation methods, we reduce the problem with efficient reductions to a smaller one, the "kernel",
which we then solve exactly with exact exponential algorithms. One can think of this as preprocessing
the instance. We give a first example for the vertex cover problem.

We’d like to know if a graph G contains a vertex cover (a set of vertices such that each edge has at
least one of its endpoints in that set) of size at most k. A first easy preprocessing step would be to delete
isolated vertices from the instance, as no edges are incident to them so that having them in a vertex cover
is useless. Formally, we create a subproblem of instance (G, k) in the form of (G\{v : degG(v) = 0}, k),
which we then seek to solve. If it’s a positive instance with cover S, then S is also a cover of G, since
the edges are the same in both graphs. If it isn’t, then (G, k) must be a negative instance too, as for any
cover S of G of size at most k, so is S\{v : degG(v) = 0} in G\{v : degG(v) = 0}.
The next preprocessing step is based on a necessary condition on positive instances of the problem: if S
is a vertex cover of G of size at most k and v ∈ V has degG(v) ⩾ k + 1, then v must be in S. Otherwise,
the edges of δ(v) would have to be covered by the other endpoint, which accounts for k + 1 vertices in S,
which we assumed to have size at most k. Thus, the vertices of degree degG(v) ⩾ k + 1 will have to be in
a a vertex cover of G of size at most k, if there is one. Since vertex covers are stable under vertex deletion,
in the sense that if S is a vertex cover of G, then S\v is one of G\v (indeed, an uncovered edge would have
had to be incident to v), we can make the following reduction. Delete all vertices of degree degG(v) ⩾ k+1
and solve the instance on G\{v : degG(v) ⩾ k + 1} with parameter k′ = k − |{v : deg(v) ⩾ k + 1}|: if the
subproblem is a positive instance with cover S′, then S = S′ ∪ {v : degG(v) ⩾ k + 1} is a set cover of size
at most k of G, and if the subproblem is a negative instance, then so must the instance (G, k) bee as well,
since for a set cover S of size at most k of G, S′ = S\{v : degG(v) ⩾ k + 1} would be a positive insance
on (G\{v : degG(v) ⩾ k + 1}, k − |{v : degG(v) ⩾ k + 1}|).

Recursively applying these reductions when they apply, we get a sequence of sub-problems (Gi, ki) for
subgraphs Gi or decreasing ki. Producing the instances is done in polynomial time, as we have to check
for at most |V | degrees each time, and so is augementing positive instances. The question is what happens
if none of the cases needed for these reductions apply, that is, Gi has no isolated vertices nor vertices of
degree more then ki. In that case, we would decide the problem with an exact exponential algorithm. For
example, one can use brute force of trying all vertex sets and checking if all edges are covered, in time
2|Vi||Ei|. We will now try to bound |Vi|, |Ei| and the number of reductions we can make. It turns out that
analysis will give us a criterion that avoids the brute force finish in some cases.

Lemma:

If (Gi, ki) is a positive instance, and the reductions don’t apply, then |Vi| ⩽ k2 + k and |Ei| ⩽ k2.

With this lemma, once the previous reductions don’t apply, we can check if |Vi| > k2 + k or |Ei| > k2,
in which case we’ll know that the instance can’t be positive, so the the previous and the initial instance
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(G, k) can’t be either. If however |Vi| ⩽ k2 + k and |Ei| ⩽ k2, we will have to use the exact exponential
algorithm on the last instance to take our decision. For the brute force appraoch, we’ll then have bound
O
(
2k

2+kk2
)

on its runtime. Since we perform at most |V | reductions since each reduction deletes vertices

(making |V | inicidence checks each time), the runtime is O
(
2k

2+kk2|V |2
)
. It is polynomial in the graph

data, but exponential in the parameter k: this is our first example of a parametrized algorithm.

Proof of the lemma: If (Gi, ki) is a positive instance with cover S and no isolated vertices or ver-
tices of degree ⩾ ki + 1, then we use the following remarks. The vertices of Vi\S must be adjacent to
one of S, since they’re not isolated, and an edge they’re incident with is covered by S. Now, any vertex
of S can have at most ki neighbours, so that there are at most ki vertices of Vi\S per vertex of S, hence
|Vi\S| ⩽ ki|S|, so that |Vi| ⩽ (ki + 1)|S| ⩽ k2 + k as |S| ⩽ ki.
For the edge Ei, each edge is incident to a vertex of S, each of which can have at most ki incident edges,
so that |Ei| ⩽ ki|S| ⩽ k2i .

Before moving to the next example, we note that one can easily perform an input specification for hard
problems, given a parameterized algorithm. For example, we can consider the class of graphs admitting a
vertex cover of size at most p

√
ln2(|V |)) for some fixed p > 0. On that class, we can run our algorithm

with k = p
√

ln2(|V |)), in time O
(
|V |2p ln2(|V |2p))|V |2

)
, and find a small cover. In fact, we can perform

binary search on k ≤ p
√

ln2(|V |)), where each query takes time O
(
|V |2p ln2(|V |2p))|V |2

)
, to find a mini-

mum vertex cover in time O
(
ln2(p

√
ln2(|V |)))|V |2p ln2(|V |2p))|V |2

)
. So on this class of graphs with small

vertex cover, the minimum vertex cover can be found in polynomial time.

d-Hitting set with sunflowers
In the d-hitting set probelm, we’re given a family F ⊆ 2U of classes (subsets) of an universe U , each of size
at most d, and our goal in the decision version of the problem is to find a set H ⊆ U of representatives,
in the sense that for all classes A ∈ F , it’s represented by A ∩H ̸= ∅, so that |H| ⩽ k.

An interesting notion from combinatorics related to this problem is that of a sunflower. The sets
S1, ..., Sq ∈ F form a sunflower of size q if for any i ̸= j, they have the same intersection Y = Si ∩ Sj , the
core, which may be empty, and non-empty petals Si\Y (which are disjoint). This notion allows us to
make an observation similar to that in the previous example for vertex cover. Indeed, if F has a sunflower
of size k + 1 as well as a hitting set H of size at most k, then H must contain some element of the core
Y of the sunflower, which must be non-empty. Otherwise, the representatives of the Si lie in the disjoint
petals Si\Y , so that k + 1 are needed, contradicting |H| ⩽ k.

If we have an efficient way to detect sunflowers of size at least k + 1, then we can make the following
observation. If we find one with empty core, there are at least k+1 disjoint petals of F so that no hitting
set can have size less then k. If it has non-empty core, we know that a potential hitting set of size less
then k must contain an element of the core. In fact any element does the job, as all Si contain the whole
core. We can therefore reduce instance (F, k) to ((F\{S1, ..., Sq}) ∪ Y, k) (with q ⩾ k + 1), replacing the
sunflower by its core. Indeed, any hitting set of (F\{S1, ..., Sq}) ∪ Y will hit Y , hence all Si, so that it’s
a hitting set for F too. Conversely, if (F\{S1, ..., Sq}) ∪ Y has no hitting set of size less then k, then nor
can F have, as otherwise, we just observe that such a hitting set H would have to hit Y , so that H would
also be a hitting set of (F\{S1, ..., Sq}) ∪ Y .

The question now is how to find such sunflowers, and what can be said about a reduced instances size
when no such sunflowers can be found. We will make use of:
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Sunflower lemma (Erdös-Rado):

Given a family F ⊆ 2U of subsets of an universe U , each of size at most d, then if |F | > d!kd, it
contains a sunflower with k + 1 petals, that we can find in time polynomial in |F |, |U |, k and d.

Proof: Let’s start by looking for disjoint sets, as they form sunflowers with empty core. We find a aug-
mentation maximal family S1, ..., Sq of disjoint sets of F as follows: start with some set S1of F , and iterate
over the |F | sets of F , augmenting the current family S1, ..., Sl by Sl+1 if it’s disjoint from the previous
sets, which we can check in time d|F |. This output family will be maximal in the sense that no other set
of F can be disjoint from all S1, ..., Sq, since this would contradict the fact we didn’t add such a set to the
family when it was considered by our algorithm.
If q ⩾ k+1, we found our sunflower. The question is how to recycle the case q ⩽ k into something usefull.
We consider S = ∪i∈[q]Si, which has size |S| ⩽ kd (as q ⩽ k and |Si| ⩽ d), and investigate the fact that
for all A ∈ F , we have A ∩ S ̸= ∅.
The idea is that we can expect an element that is is a lot of sets to be in the core of some sunflower
with many petals. For each A ∈ F , we pick som s ∈ S such that s ∈ A ∩ S, and increase its "number of
representations" ns by 1, staring from ns = 0. We then consider the s with the largest ns. This is done

in 2|F | time. Since |F | =
∑
s′∈S

ns′ , we’ll have ns ⩾
|F |
|S|

⩾
|F |
dk

by max-over-average. We can then look for

a sunflower in the family F ′ = {A\s : A ∈ F, s ∈ A}, based on the intuition we mentioned. Note that
|F ′| = ns. If S′

1, ..., S
′
k+1 is a sunflower of F ′, then S1 = S′

1 ∪ s, ..., Sk+1 = S′
k+1 ∪ s is one of F . We will

thus work recursively on family F ′, which will have elements of size at most d− 1. The base case is that
of singletons where d = 1, in which all collections of disjoint singletons are sunflowers.
The problem is that our recursion fails when a sub-case has no sunflower of size k + 1. We will seek
conditions on F such that this case never occurs. Following the idea that a large family should contain
a large sunflower, we’ll try to prove that a lower bound on |F | (which we’ll later find to be d!kd) guar-
antees the existence of a large sunflower. To make this compatible with our recursion, the lower bound

should be stable under |F ′| ⩾ |F |
dk

. This is the case of d!kd, as then |F ′| ⩾ |F |
dk

>
d!kd

dk
= (d − 1)!kd−1.

We therefore show that when |F | > d!kd for a family F ⊆ 2U of subsets of an universe U , each of size
at most d, by induction on d. The step is precisely the one we developed. We find s, build F ′, note
that |F ′| > (d − 1)!kd−1, so that the induction hypothesis applies and we conclude with the existence of
sunflower S′

1, ..., S
′
k+1 of F ′, which we can augment to sunflower S1 = S′

1 ∪ s, ..., Sk+1 = S′
k+1 ∪ s of F .

The key question is if the initial step holds, for our bound d!kd. Fortunately, if for d = 1, F is a family
of singletons with |F | > k, we can take k + 1 different singletons, which will form a sunflower. So when
|F | > d!kd, our recursion will indeed produce a sunflower, since the base case contains one. There are at
most d recursions, since this parameter decreases each time. So this algorithm is O

(
d2|F |2

)
.

We now return to the kernelisation of the d-hitting set problem. At each step, we check if for the current
family F , we have |F | > d!kd. In that case, we run the previously described algorithm to find a sunflower
of size k + 1, which we use to make the reduction, moving to the next iteration. Since at each iteration,

|(F\{S1, ..., Sk+1})∪{Y }| = |F |−k, this case can occur at most
|F | − d!kd

k
times, for the initial family F .

Once the sub-case family has size less then d!kd, we have to solve the instance with an exact exponential
algorithm. The brute force approach of testing all possible hitting sets H, O(2d!k

d
) of which there are,

each in time |F |, will lead the main algorithm to run in time O
((
|F | − d!kd

k

)
d2|F |2|F |2d!kd

)
. Note that

this time is polynomial in |F |, and that we are using two parameters d and k.
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Max-SAT with crown decomposition

Feedback vertex set with the expantion lemma
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4.2 Search trees
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4.3 Iterative compression
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4.4 Tree decompositions and treewidth

75



4.5 Subset convolution and applications

Subset convolutions originate from combinatorics. We can phrase certain algorithmic problems in terms
of computing such a convolution. The name is due to their similarity with the convolutions from Fourier
analysis: we’ll show that there are transforms that simplify their computation.

First, let’s give an example of a problem that can be expressed in terms of such convolution. We consider
the k-coloring problem in which we ask if a graph G has a proper coloring of at most k colours. This is
equivalent to finding a partition of V into at most k independet sets.
The first step towards a computational reformulation is obtained by introducing indicator

s(X) =

{
1 : X independent

0 : else
so that the fact that the number of proper colorings with at most k colours

is counted by
∑

X1, ..., Xk ⊆ V
Xi ∩Xj = ∅ : i ̸= j
∪i∈[k]Xi = V

∏
i∈[k]

s(Xi). Indeed,
∏
i∈[k]

s(Xi) = 1 precisely when the Xi form a proper

colorings with at most k colours (recall that we allow the Xi to be empty, which corresponds to color i
not being used). This approach may more feel more motivated if one has a probability theory (or even
random graph) background.
The next step is to recognize that this sum can be expressed as s ∗ s ∗ ... ∗ s︸ ︷︷ ︸

k−1 operations

(V ), where ∗ is the subset

convolution defined by (f ∗ g)(X) =
∑

A ∪B = X
A ∩B = ∅

f(A)g(B). Indeed, we can show this by induction.

For k = 2, we have (s ∗ s)(V ) =
∑

X1 ∪X2 = V
X1 ∩X2 = ∅

∏
i∈[2]

s(Xi) by definition. For the step, for f = s and

g = s ∗ s ∗ ... ∗ s, we have

(f∗g)(V ) =
∑

A ∪B = V
A ∩B = ∅

s(A)


∑

X1, ..., Xk ⊆ B
Xi ∩Xj = ∅ : i ̸= j
∪i∈[k]Xi = B

∏
i∈[k]

s(Xi)


=

∑
A,X1, ..., Xk ⊆ V
Xi ∩Xj = ∅ : i ̸= j

A ∪Xi = ∅
A ∪i∈[k] Xi = V

s(A)
∏
i∈[k]

s(Xi)

and renaming A = Xk+1 does the job.
Hence, the goal is to compute s ∗ s ∗ ... ∗ s︸ ︷︷ ︸

k−1 operations

(V ) efficiently, as brute evaluation requires computing a sum

of k|V | terms.

We now discuss transforms of functions f : 2V → R that will simplify the convolutions similar to the
Fourier transform. They can be thought of as generalizations of the inclusion exclusion principle, when
phrased as a transform, similar to binomial- or Stirling-inversion from combinatorics.
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Definitions:

For f, g : 2V → R, we define the subset convolution by (f ∗ g)(X) =
∑

A ∪B = X
A ∩B = ∅

f(A)g(B).

We define the cover product by (f ∗c g)(X) =
∑

A ∪B = X

f(A)g(B).

We define the zeta-transform as ζ :

{(
2V → R

)
→
(
2V → R

)
f 7→ ζ(f)(X) =

∑
Y⊆X f(Y )

.

We define the Möbius-transform as µ :

{(
2V → R

)
→
(
2V → R

)
f 7→ µ(f)(X) =

∑
Y⊆X(−1)|X|−|Y |f(Y )

.

We define the odd-negation-transform as σ :

{(
2V → R

)
→
(
2V → R

)
f 7→ σ(f)(X) = (−1)|X|f(X)

.

The link to inclusion-exclusion can be seen by letting f(X) = −|∩i∈X Ai|, we have reformulated inclusion-
exclusion as | ∪i∈X Ai| = (ζσf)([n]) + |U |, with convention ∩i∈∅ = U . The alternative expression of
inclusion-exclusion can be expressed by letting g(X) = |∪i∈XAi| = | ∩i∈X Ai|, so that | ∩i∈[n] Ai| =
(σµg)([n]). By writing g([n]) = |U | − | ∪i∈[n] Ai| = −(ζσf)([n]) and recalling f(X) = −| ∩i∈X Ai|, we

see that

{
g([n]) = −(ζσf)([n])
f([n]) = −(σµg)([n])

. Linearity taking care of the negative sign, we have (ζσσµ)f = f and

(σµζσ)g = g. This is actually a particular case of the following:

Transform inversion:

We have ζ = σµσ, µ = σζσ, σσ = id, ζµ = id and µζ = id.

Proof: We show the last two identities. We have (µζf)(X) = (σζσζf)(X) = (−1)|X|
∑
Y⊆X

(−1)|Y |
∑
Z⊆Y

f(Z)

by definitions, which we reformulate as (−1)|X|
∑

Z:Z⊆X

f(Z)(−1)|Z|
∑

Y :Z⊆Y⊆X

(−1)|Y \Z| . The last sum is

of form
∑

A:A⊆B

(−1)|A| for A = Y \Z and B = X, which turns out to be 0, as we’ll soon show, when B ̸= ∅.

So we rewrite (µζf)(X) = (−1)|X|

f(X)(−1)|X|1 +
∑

Z:Z⊊X
f(Z)(−1)|Z|

∑
Y :Z⊆Y⊆X

(−1)|Y \Z|

 so that

B = X\Z is non-empty, since Z ⊊ X, leading to (µζf)(X) = f(X), as desired.
To see that

∑
A:A⊊B

(−1)|A| = 0, take a b ∈ B ̸= ∅, and partition the subsets of B on containing b or not.

There must be the same amount in both, since there is a bijection between them, given by A 7→ A∪ b and
A 7→ A\b, that pairs up subsets A1 and A2 such that A1∆A2 = {b}. Since the pairs differ only by one
element, they have different parities, and cancel their corresponding terms in

∑
A:A⊊B

(−1)|A|.

To see that ζµ = id, we write ζµ = σµσσζσ = σµζσ = σσ = id, using the previous identities.
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Transform:

We have ζ(f ∗c g) = (ζf)(ζg), and therefor f ∗c g = µ((ζf)(ζg)).

Proof: ζ(f ∗c g)(X) =
∑
Y⊆X

∑
A∪B⊆Y

f(A)g(B) =
∑

A∪B⊆X

f(A)g(B) =
∑

A,B⊆X

f(A)g(B) =∑
A⊆X

f(A)

∑
B⊆X

g(B)

 = (ζf)(X)(ζg)(X).

Convolution and cover:

By letting fk(X) =

{
f(X) : |X| = k

0 : else
, we can write (f ∗ g)(X) =

|X|∑
i=0

(fi ∗c g|X|−i)(X).

Proof: (f ∗ g)(X) =
∑

A ∪B = X
A ∩B = ∅

f(A)g(B) =
∑

A ∪B = X
|A|+ |B| = |X|

f(A)g(B) since A ∪ B = X and

|A| + |B| = |X| imply A ∩ B = ∅, as |A ∩ B| + |X| = |A ∩ B| + |A ∪ B| = |A| + |B| = |X| so that

|A ∩B| = 0. Next, we partition on sizes with (f ∗ g)(X) =

|X|∑
i=0

∑
A ∪B = X

|A| = i, |B| = |X| − i

f(A)g(B), and re-

lax to (f ∗g)(X) =

|X|∑
i=0

∑
A∪B=X

fi(A)g|X|−i(B), which is
|X|∑
i=0

(fi ∗c g|X|−i)(X), as when |A| = i, |B| = |X|− i

doesn’t hold, the term is 0.

We now have our pipeline for computing the subset convolution using transforms. We compute the
V | values (fi ∗c g|X|−i)(X) for all i ∈ [|X|] with identity f ∗c g = µ((ζf)(ζg)), so that 3 transforms have to

be performed each time. We then conclude with (f ∗g)(X) =

|X|∑
i=0

(fi ∗c g|X|−i)(X). The whole point of this

is of course to gain time over the actual computation of the convolution. The latter requires enumerating
all bipartitions of X. This can be done by choosing some x ∈ X ̸= ∅, and letting A range over the subsets
of X\x, letting B = X\A. Indeed, in any biaprtition of X, x is in exactly one of A or B, so that this case
is enumerated with our method. Hence, the convolution is a sum of 2|X|−1 terms.
The subtlety is that for our coloring problem, we need to compute iterated convolutions. There, for com-
puting the next convolution, we need to have the values of the previous convolution for all X ⊆ V . The

brute computation of all convolution values would thus require
∑
X⊆V

2|X|−1 =
1

2

|V |∑
k=0

(
|V |
k

)
2k =

3|V |

2
terms.

We’ll now show that we can do better with our transform pipeline.

Fast convolution:

We can compute all 2|V | values (f ∗ g)(X) over X ⊆ V in total time O(2|V ||V |3).
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Proof: The idea is similar to fast polynomial multiplication with the FFT. We will compute the values
(fi ∗c gj)(X) ranging over X ⊆ V with transforms and dynamic programming, in time 2|V ||V |, for fixed
i, j ∈ [|V |], so that the total process requires time 2|V ||V |3 by ranging over i, j. We can then conclude with

2|V | computations of the form (f ∗ g)(X) =

|X|∑
i=0

(fi ∗c g|X|−i)(X) with O(|V |) terms, so that the runtime is

still dominated by 2|V ||V |3.
To compute the values (fi ∗c gj)(X), we’ll use (fi ∗c gj)(X) = (σζσ)((ζfi)(X)(ζgj)(X)). More presicely,
we will compute the values (ζfi)(X), (ζgj)(X) and then ζ

(
(−1)|.|(ζfi)(.)(ζgj)(.)

)
(X), each time for all

X ⊆ V separately, in total time 3× 2|V ||V |, as each computation of all zeta-transform values will require
time 2|V ||V |.

The idea is that since we take sums over subsets in the zeta-transfom, and different sets can have
subsets in common, we don’t have to recompute parts we have already implicitly computed if we organize
computation well.

For the dynamic programming solution to computing the values, we will number the elelement in V
from 1 to n = |V |, and associate to each set X ⊆ V a string x1, ..., xn where xi ∈ {0, 1} indicates if the ith
element of V is in X. We will recurse from the top for computing the sums

∑
Y⊆X

f(Y ). The last trems of

the sums will be f(X), which we can compute for all X ⊆ V . We then disjoin cases on the last element
xn. If X contains it, then it’s subsets can be disjoint on whether they contain it too. In our notation,
if xn = 1, then the subsets of x correspond to strings of form ∗, ..., ∗, 1 or ∗, ..., ∗, 0, for ∗ ∈ {0, 1}. In
particular

∑
Y⊆X

f(Y ) will contain both f(x1, ..., xn−1, 1) and f(x1, ..., xn−1, 0). If xn = 0, then the sum

only contains f(x1, ..., xn−1, 0). We can then start our dynamc programming table. Picture a table with
rows ndex by substes of V , represented by 0-1-strings. We will sucessively get more and more terms of
the sums column by column. On the first column, we enter the values f(X). We then add or pass values
according the the way we discribed it for xn, disjoining on the values of the next elements xi. In tabular
form:

f(a1, ..., 1, 0) S1(a1, ..., 1, 0) = f(a1, ..., 1, 0)
S2(a1, ..., 1, 0) =

S1(a1, ..., 0, 0) + S1(a1, ..., 1, 0)

f(a1, ..., 1, 1) S1(a1, ..., 1, 1) = f(a1, ..., 1, 0) + f(a1, ..., 1, 1)
S2(a1, ..., 1, 1) =

S1(a1, ..., 0, 1) + S1(a1, ..., 1, 1)

f(b1, ..., 0, 0) S1(b1, ..., 0, 0) = f(b1, ..., 0, 0) S2(b1, ..., 0, 0) = S1(b1, ..., 0, 0)
f(b1, ..., 0, 1) S1(a1, ..., 0, 1) = f(b1, ..., 0, 0) + f(b1, ..., 0, 1) S2(b1, ..., 0, 1) = S1(b1, ..., 0, 1)

This is a bloody mess.... FIX.

Coloring with convolutions:

We can check if graph G can be coloured with at most k colours in time O(k2|V ||V |3).

COMPLETE: combi with treewidth.
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4.6 Solutions
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4.7 Solutions
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5 Matroids

Accompanying Lawlers book

5.1 Definitions, examples, properties

We’ll present matroids as an abstract formalism that allows to relate optimization problems with a common
language. Historically however, matroids originated from linear algebra.

Many combinatorial optimization problems can be expressed as max

(∑
i∈S

wi : S ∈ F

)
where F is a family

of subsets of a finite set E, so F ⊆ 2E , that represents sets with a certain combinatorial among a larger set
E. For example, in view of the MST problem, E could be the edge-set of a graph G, and F the family of
edges inducing an acyclic graph. A particular class of such families are the following, which our example
is a part of:

Independence system:

An independence system is (E, I) where E is a finite set and I ⊆ 2E is a family of sets that
is subset-stable, in the sense that for all A ∈ I and B ⊆ I, we have B ∈ I. We always have ∅ ∈ I by
convention.

A basis of I is a B ∈ I that is inclusion maximal, so that there is no A ⊋ B in I.

In our example, if the graph is connected, the bases of I are the spanning trees of the graph.
We can study the problems of finding maximum weight independent sets and of finding minimum weight
bases. The MST problem is of the second kind, for the independece set of our example.
As we know, the MST is solved by a greedy algorithm, which in independece set terms would consist of
sorting the elements of E by increasing weight, and constructing a base (tree) B by starting with ∅, adding
elements (edges) of lowest weight not yet added to it, if the addition maintains independece (acyclicity).
To see that the outputted B is a base, assume that there is an A ⊋ B that is also in I, so that there is
an a ∈ A\B and so that (B ∪ a) ∈ I since (B ∪ a) ⊆ A ∈ I. If we consider the iteration in which a was
considered, at which the output-candidate was B′ ⊆ B, then we didn’t include a because (B′ ∪ a) /∈ I.
This is a contradiction to subset-stability, as (B′∪a) ⊆ (B∪a) ∈ I. So the greedy algorithm does produce
a base of the independence system. We’ll see in the next section that it in fact provides a minimum weight
base.

Now that we’ve expressed a greedy algorithm for independence systems, a question we can ask is: what are
the independence systems for which the greedy algorithm produces an optimal output ? We can actually
give a transparent property defining these independence systems.

Matroids:

A matroid is an independence system for which the greedy algorithm solves the optimization
problem. Equivalently, it’s an independence system (E,M) such that for all A,B ∈ M with |A| > |B|,
there is an a ∈ A\B such that (B ∪ a) ∈M (the augmentation property).

We’ll show the equivalence of both definitions in the next section.
Note that showing the augmentation property can be just as hard as directly proving the correctness of
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the greedy algorithm. We now give a few examples of matroids:

The graphic/cycle/forest matroid:
It’s our running example of the acyclic edge-sets of a graph. Take edge-sets A,B ∈ M with |A| > |B|.
We’ll show that A must have an a ∈ A\B that connects two components of the forest B by contradiction.
If it didn’t then all edges a ∈ A have both their endpoints in the same component of B. For such a
component C, the edges of A with endpoints in C form an acyclic set, so that there can be at most |C|−1
of them, whereas B has exactly |C| − 1 edges in its connected component C. Summing over components,
we get |A| ⩽ |B|, a contradition to |A| > |B|. Hence an a ∈ A\B exists that connects two components of
B: since (B ∪ a) is acyclic, the augmentation property is proved.

The partition and the uniform matroids:
We consider a disjoint partition E = ∪i∈[p]Ei and numbers ki ∈ N for i ∈ [p]. The partition matroid
is formed by M = {F ⊆ E : |F ∩ Ei| ⩽ ki,∀i ∈ [p]}. An example is when E has elements of form (i, j)
where i indexes a person and j an activity, and we which to match people to activities, where an activity
can host multiple (possibly all) people, such that a function of the attribution choices is maximised. Then
Ei = {(k, j) : k = i} and ki = 1, as a person can join at most one activity. A particular case is that of
the uniform matroid, which is a partition matroid for which p = 1. They are independence systems, as
|F ∩Ei| can only decrease under subsets. To see the augemntation property, we take sets A,B ∈M with
|A| > |B| and show that there has to be some i ∈ [p] such that |A ∩ Ei| > |B ∩ Ei|: indeed, as we have
partition E = ∪i∈[p]Ei, assuming the opposite, which is |A∩Ei| ⩽ |B∩Ei| for all i ∈ [p], leads to |A| ⩽ |B|
after summation, is a contraditon to |A| > |B|. Hence, there must be an a ∈ (A ∩ Ei)\(B ∩ Ei) ⊆ A\B,
otherwise (A∩Ei) ⊆ (B ∩Ei), contradicting |A∩Ei| > |B ∩Ei|. Then (B ∪ a) ∈M , for B in unchanged
on the j ̸= i, as a ∈ Ei and the Ej are disjoint so that |(B ∪ a) ∩ Ej | ⩽ |B ∩ Ej | ⩽ kj for j ̸= i, and
|(B ∪ a) ∩ Ei| = |B ∩ Ei|+ 1 ⩽ |A ∩ Ei| ⩽ ki (sizes are integers).

The transversal and matching matroid:
We consider a population E set of g groups Xi ⊆ E in the population, where individuals can belong to
multiple groups. We seek a set of distinct individuals representing a group they belong to, which should be
maximal and cost minimum, for individual costs. Here the system is M = {{r1, ..rk} : k ⩽ g; ri ∈ Xgi ; gi ̸=
gj ,∀i ̸= j}. It’s an independence system since by taking a subset of representatives, those representatives
still belong to group, each different for different representatives.As we’ll soon see, it’s a matroid, called
the transversal matroid.
It’s a particular case of the matching matroid, which is based on a bipartite graph (U ∪V,E) and who’s
elements are vertices, unlike in the previous examples. It’s (U,M) where M is the set of subsets W ⊆ U
that are covered by some matching EM of the graph. To see that this is an idependece system, note that
a subset of vertices covered by a matching is still covered by that matching. The relation to transverals is
that we can represent the transversals by matchings in a graph. We set U to be the population, V to be
the groups, and add an edge between vertices if the individual belongs to the group: then, a set covered
by a matching corresponds to a set of representatives.
We’ll now show the augmentation property. We consider sets A,B ⊆ U covered by matchings EA and EB

(that we assume minimal for covering these sets), so that |A| > |B|. To see what can be added from A,
we investigate the symmetric difference EA∆EB. As we remember from the bipartite matching section,
EA∆EB forms disjoint paths and cycles, with vertices on them alternating bipartition sets, and edges
alternating matching sets (alternating paths and cycles). The symetric difference can’t be empty, since
|A| = |EA| and |B| = |EB| and EA∆EB = ∅ implies A = B which would then contradict |A| > |B|, and
there can’t be only cyles, as these cycles have to be even by bipartiteness, and they’re alternating, so that
|EA| = |EB|, contradicting |A| > |B| again. There is therefore an alternating path in EA∆EB. I fact there
has to be an odd one, for otherwise |EA| = |EB| again, which leads to the same contradiction as before.
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Further, there has to be an odd path with more edges from EA, for otherwise |EA| < |EB|, contradicting
|A| > |B| again. This is the augmenting path P we’re looking for to augment EB. Indeed, P∆EB is a
matching, and it covers the vertices of B, as well as an a ∈ A\B which is an endpoint of the path P , so
that B ∪ a is independent.

Matroid intersection
Not all independence systems are matroids. This is clear from the fact that the greedy algorithm doesn’t
provide optimal solutions for all problems. For example, the edge sets of bipartite matchings are an inde-
pendence system (subsets of matchings are matchings), but they aren’t matroids, as the following example
of failure of the augmentation property shows: We consider the complete bipartite K2,2 with vertices u1, u2
and v1, v2. The matching {{u1, v2}, {u2, v1}} is bigger then the single edge one {u1, v1}, yet no edge from
the bigger one can be used to augment the smaller one.

However, matroids can still be used to discribe this problem ! Indeed, for a bipartite graph (U ∪V,E), we
can consider the partition matroids given by ∪v∈Uδ(v) and kv = 1, and ∪v∈V δ(v) and kv = 1. A matching
is independet in both matroids, and any edge set in both matroids is a matching. It turns out that many
other combinatorial optimization problems can be considered as problems on intersections of matroids.
Here are a few examples:

Branchings:
In a digaph (V,A), we can look for sets of edges that induce a partial order on vertices. This order is given
by u > v if there is a directed path from u to v. If (V,A) is a communication network, then we’re interesetd
in choosing a node where to pass a message from, so that the message will be propagated as much as pos-
sible. We’ll request that each node recieve the message at most once, so that the arc set we’re looking fo is
in the in-degree matroid with kv = 1. We also want to prevent cycles, so that we do get a partial order on
vertices, which can be expressed as the edge sets being part of the forest matroid, for discarded orientation.
This structure, the intersection of this in-degree matroid and the forest matroid is the set of branchings.
We can look for a maximum size branching, so as to maximise the number of times the message was passed.

Tree partition:
We can get more complicated problems as matroid interection problems with some clever trickts and gad-
gets. For example, we can ask if a given graph contains t edge-disjoint spanning trees. The case of t = 2
will be improtant for Shannon’s switching game, in the game theory section. To reduce this to matroid
intersection, we’ll build a graph Gs consisiting of t disjoint copies of the original G, where the edges ei
are the copies of edge e in copy i. The forest matroid will consist of forests in each copy of G. Our goal
is for these forests to be "disjoint" in the sense that only one of the copies ei is used per original e, so
that "projecting" these forests on the original graph yields edge disjoint forests. If we interect with the
partition matroid with partition ∪e∈E{e1, .., et} and k = 1, we get the desired property.
If w can find a set in the intersection of size t(|V | − 1), then it’s a union of t disjoint trees, as there can be
at most |V | − 1 edges per copy. In particular, this is a maximum size intersection set, so that the problem
reduces to finding the largest set in the matroid intersection.

Hamiltonian path:
We can express some problems as th intersection of more then two matroids. This is the case of the di-
rected Hamiltonian path problem for digraphs. We can consider the intersection of the in-degree matroid
with k = 1, with that of the out-degree matroid with k = 1. These arc sets consist of disjoint directed
paths and cycles (follow unique neighbours until repeats or there are none). If we intersect with the forest
matroid for discarded orientations, we prohibit the cycles.
To see that finding the maximum size set in the intersection of these 3 matroids is equivalent to finding a
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directed Hamiltoninan path, we note that an intersection set of size |V | − 1 must be a Hamiltonian path,
and that all other intersection sets have lesser size. The latter is due to the size of a path with vertex set
U is |U | − 1, so that by summing over the paths in the intersection set and bounding by the total number
of vertices, we get the result.

Thus, matroid intersection can express both polynomial-time-solvable problems, and NP-complete ones.
Note that the number of matroids intersected changed between these types of problems.

We’ll now introduce a few measures of sets wrt. an Independence system (E, I) that will come in useful
later, when studying the greedy algorithm.

Ranks:

For a independence system (E, I), we define the rank r : 2E → N as a function providing the
size of the largest independent set in a subset of E, r(X) = max(|Y | : Y ⊆ X,Y ∈ I).

We can consider the inclusion maximal independent subsets of an arbitrary set X ∈ 2E , which
we call the bases of X, and define the lower rank to be the size the the smallest such base,
ρ(X) = min(|Y | : Y ⊆ X,Y ∈ I, Y ∪ x /∈ I, ∀x ∈ X\Y ). A base of a matroid is a base of E.

Finally, we can define the rank quotient, which measures the largest distance between bases,

q(E, I) = min
X ∈ 2E

r(X) ⩾ 1

(
ρ(X)

r(X)

)
.

Indeed, the set Y attaining size r(X) is a base of X, for otherwise we could augment it by som x ∈ X\Y
so that Y ∪ x ∈ I is a larger independent set contained in X. This implies that ρ(X) ⩽ r(X) for all X
and in particular q(E, I) ⩽ 1.

Bases in matroids:

For a matroid (E,M), all bases of a set X have the same size, so that ρ = r and q(E,M) = 1.
Conversely, if all bases of a set X have the same size, aka. ρ = r or q(E, I) = 1, then the independece
system satisfies the augmentation property and is therefore a matroid.

Proof: If two bases A,B of X had different size, say |A| > |B|, then by the augementation property
the is an a ∈ A\B ⊆ X\B such that B ∪ a is independent, and since it’s also in X, this contradicts B
being a base. Conversely, if bases have same size, and we take any two independent sets A,B such that
|A| > |B|, then we can look at the bases of X = A∪B. Since A is independent, we can possibly augment
it by elements of X until we have a base of X of size ⩾ |A|, so a base of size > |B|, preventing B from
being a base of X, as they’re supposed to have same sizes. This means that B can be augmented by some
x ∈ X\B = A\B, so that B ∪ x is independent, which is th result of the augmentation property.

COMPLETE: lower bound to quotient with circuits, rank submodularity.
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5.2 The greedy algorithms
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5.3 Matroid intersection
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5.4 Matroid partition
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5.5 Matroid union
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5.6 Solutions
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6 Hypergraphs

6.1 Basics on hypergraphs

We’ll start with some basic hypergraph theory, since it seldom appears in discrete math classes, even
advanced ones. Here’s a bunch of definitions and examples:

Hypergraphs (undirected):

An undirected hypergraph H = (X,D) consists of a finite set X of vertices, and a set D ⊆ 2X of
subset of vertices d ⊆ X, called hyperedges.

The edge-neighbourhood of a vertex x ∈ X is the set of hyperedges it’s contained in,
δ(x) = {d ∈ D : x ∈ d}, and the vertex-neighbourhood of a vertex x ∈ X is the set of ver-
tices it shares a hyperedge with, N(x) = ∪d∈Dd.

The degree of a vertex x ∈ X is the number of hyperedges it’s contained in, deg(x) = |δ(x)|,
and the degree of an hyperedge d ∈ D is its size.

Matroids are hypergraphs.

Hypergraphs (directed):

An directed hypergraph H = (X,D) consists of a finite set X of vertices, and a set D ⊆
(
2X × 2X

)
of directed hyperedges. For an hyperedge d = (t(d), h(d)) ∈ D, the set t(d), h(d) ⊆ X are called the tail
and head of the edge, respectively.
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6.2 Shortest hyperpaths
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6.3 Flows on hypergraphs

Italian paper
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6.4 Hypergraph cuts

Paper

94



6.5 Hypergraph coloring

Chapter 10 of Voloshin
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6.6 Packing and covering in hypergraphs

Bondy Murty. Schrijver’s Combinatorial optimization in the worst case.
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6.7 Solutions
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7 Computational Logic

7.1 Normal forms

Recall that logical statements can be combined with connectors. For example, given two Boolean vari-
ables p and q, we can state p ⇒ q, which is true unless q is true and p is false. More generally, we’ll be
interested in a Boolean function f of d variables xi which take values among "true" and "false", so that
f : {true, false}d → {true, false}.

An interesting fact is that any such function can be expressed using only "not", "and" and "or":

Normal forms:

We call a disjunctive clause an expression of form
m∨
i=1

li(xi), and a conjunctive one an expres-

sion of form
m∧
i=1

li(xi), where li(xi) is called a literal, for which li(xi) = xi or li(xi) = ¬xi.

We call a conjunctive normal form (CNF) an expression of form
n∧

i=1

mi∨
j=1

li,j(xπi(j)) and a disjunctive

normal form (DNF) an expression of form
n∨

i=1

mi∧
j=1

li,j(xπi(j)), for some maps πi : [mi]→ [d].

Any Boolean function can be expressed as a DNF and CNF.

Proof: The key observation is that conjunctive clauses act like indicators in a sense:
m∧
i=1

li(xi) is true only

for one configuration of the x[m] (possibly multiple is m < d). So to construct a DNF representing f , we

can consider the set f−1(true), for each vector x of which we construct the conjunctive clause
d∧

i=1

li(xi)

where li(xi) = xi if xi = true and li(xi) = ¬xi if xi = false. This clause is true only for x. Now, the dijuc-

tion of these clauses
|f−1(true)|∨

i=1

d∧
j=1

li,j(xi) will be true for all x ∈ f−1(true), since its corresponding clause

is true at that value. For all x /∈ f−1(true) ⇔ x ∈ f−1(flase), none of the clauses are true, so that the

disjunction is false. So the expressions take the same values, and we can write f(x) =
|f−1(true)|∨

i=1

d∧
j=1

li,j(xi).

For CNFs, we can get a DNF of ¬f , and use ¬¬f = f together with Morgans laws to get a CNF of f .

In the worst case scenario, |f−1(true)| = 2d, so that the algorithm wil produce 2d clauses in a DNF.
Yet, we can do better for that as the DNF x1∨¬x1 also represents f in that case. An interesting question
is finding the smallest normal forms representing a Boolean function.

Note also the duality of DNFs and CNFs: if f has a DNF or CNF with index ranges n and (mi), then ¬f
has a CNF or DNF with index ranges n and (mi) repectively,and vice-versa, by Morgans laws.
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7.2 SAT

Given a CNF, the task of finding an assignement of the Boolean variables that satisfies the CNF is known
as SAT. Variants include k-SAT in which the clauses may contain at most k literals, and max-SAT in
which we seek an assignment satisfying as many clauses as possible.
The analogous task for DNF’s is easy: if a (conjunctive) clause contains xi and ¬xi, then the instance
is unsatisfiable, and otherwise, we pick any clause, which we can satisfy by setting literals of form xi to
true, thos of form ¬xi, and other non-apprearing literals to any value, so that the clause, and hence the
disjunction, is satisfied.

For DNFs however, the task is NP-complete. We will show this in two steps, reducing SAT to 3-SAT
and showing 3-SAT to be NP-complete. First, we’ll solve SAT with 3-SAT as a black-box.
COMPLETE (Worell 4.4)

SAT is NP-complete

Proof: One often shows that 3-SAT can solve circuit-SAT. Instead, we’ll solve independent-set with SAT,
and SAT with independent-set.
SAT to Independence-set: We reduce the SAT instance to a 3-SAT one as we described previously. We’ll
actually deal with a case where all clauses have 3 literals. To transform an instance to that form, we’ll
introduce fake variables. For clauses C of size 2, we replace them by the two clauses (C ∨f) and (C ∨¬f),
so that C must be satisfied, and for clauses C of size 1, we replace them by the four clauses of form
(C ∨ (¬)f ∨ ¬)f ′), to get the same effect.
Then, we solve the 3-SAT instance with independence set. We build triangles with vertices vi,c, vj,cvk,c for
clause c, if it contains variables xi, xj , xk. If the same variable is contained in two different clauses with
and without negation, we add an edge between the corresponding vertices. In this context, an idependent
set will use vertices that can’t correspond to the same variable but with and without negation. It can also
use just one vertex per triangle: this way, the number of satisfied clauses is exactly the number of vertices
of the independence set.
Independent-set to SAT : for an independence-set instance, we use variables wv to inidacte if v is in the
independent set (|V | variables). We then have clauses (¬wu ∨ ¬wv) for edges {u, v} ∈ E (so |E| clauses)
to encode the fact that two adjacent vertices can’t be both in the independent set. To count, we will sieve
through the graph as follows: we number the vertices in [|V |] and introduce variables wi,s to denote if the
number of vertices of the independent set in [i] is s, where s ranges in [0, i] (|V |2 variables). We replace w1,0

by ¬wv1 and w1,1 by wv1 . Next. we add clauses (wi,s∧wvi+1)⇒ wi+1,s+1 ≡ (¬wi,s∨¬wvi+1∨wi+1,s+1) (|V |2
clauses), to ensure that when [i] contains s vertices of the independent set, and vi+1 is in the independent
set, then [i+ 1] contains s+ 1 of them. To avoid expressing the converse, we’ll use (wi+1,s+1 ∧ wvi+1) ⇒
wi,s ≡ (¬wi+1,s+1 ∨¬wvi+1 ∨wi,s). To deal with the other case, we introduce the clauses corresponding to
(wi,s ∧ ¬wvi+1)⇒ wi+1,s and (wi+1,s ∧ ¬wvi+1)⇒ wi,s. In total, this will be 4|V |2 clauses. These calsues
actually imply that for each i, exactly one of the wi,s is true. This is true for i = 1 and with in an induc-
tive set, we disjoin on whether wvi+1 or ¬wvi+1 is true, in which cases the induction hypothesis and some
(wi,s∧wvi+1)⇒ wi+1,s+1 will provide the truth of a wi+1,q in the first case, while a (wi,s∧¬wvi+1)⇒ wi+1,s

will provide the truth of a wi+1,q in the second case. Uniqueness is handled similarly, where assuming the
opposite, then disjoining on whether wvi+1 or ¬wvi+1 is true and using the (wi+1,s+1 ∧ wvi+1) ⇒ wi,s or
(wi+1,s ∧ ¬wvi+1)⇒ wi,s respectively will contradict uniqueness guaranteed by the induction hyposthesis.
Satisfying the instance we built will correspond to an independent set, where the w|V |,s variables will
indicate the size of the set. We can then add clause (w|V |,1 ∨ ...∨w|V |,k) to test if there is an independent
set of size at most k.
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2-SAT:
As is in general the case, some subclasses of the problem can be solved in polynomail time:

2-SAT:

2-SAT can be solved in polynomial time.

Proof: In a preprocessing step, we can look at all clauses of size one first. If we find xi and ¬xi among
them, we can conlcude with unsatisfiability. Next, we set their values so as to make the 1-clause true. We
then replace this truth value in other clauses featuring the variable, using x ∨ true ≡ true so that this
clause can be ignored, and x ∨ false ≡ x, so that we get a new 1-clause. We reiterate this preprocessing
stage until there are no more 1-clauses.
The crutial observation is now that we can replace clauses using a ⇒ b ≡ ¬a ∨ b. We therefore seek an
assignement that is coherent with this network of implications. We”ll take that expression litterally and
build a digraph who’s vertices are the x1, ..., xd and ¬x1, ...,¬xd, adding an edge from vertex a to b if
a⇒ b is a clause. We’ll actually add the contrapositives too, so that we add an edge from vertex ¬b to ¬a
if a⇒ b is a clause, which will come in handy later. If we follow a chain of implications, aka. a path in the
graph, we may get xi ⇒ ¬xi, which isn’t a contradiction. However, if xi ⇔ ¬xi, aka. we find a directed
cylce in our graph that contains both vertices xi and ¬xi, then the clause is unsatisfiable, as xi ⇔ ¬xi is
false under any assignment. We can check this by using Floyd-Warshall and checking if in the distance
matrix, there are no two index-symmetric non-zero entries.

FIX THIS ABSOLUTE MESS OF A CORRECTNESS PROOF.
If we don’t have such cycles, can we build a satisfying assignment ?
The answer is yes, and there is a clever way of doing it. We iteratively perform the following. We consider
a pair of unassigned variables xi and ¬xi (so at most d loops). If there is a dipath of xi to ¬xi, then we
set xi = flase, if there is one from ¬xi to xi, we set xi = true, and if non of the casese apply, we set
xi = true or flase, as this won’t matter, as we’ll soon see. The idea is that false ⇒ anything, so that
setting false at the "top" of an implication chain is the safest thing we can do. Next, we do the following:
for each edge with at a true at its tail and an unassigned variables at its head, we set it’s head to true.
This loop will finish as the number of unassinged variables decreases.
We’ll prove correctness by showing the loop invariant of the outer loop that any vertex in a path from a
vertex that was assigned true is true. This is true at the begining where all vertices are unassigned. To
see the step, we’ll first show the inner loop invariant that there are no paths leading from true vertices to
false vertices. Indeed, this holds for the vertex pair xi and ¬xi, as when there is a dipath of xi to ¬xi,
then there can’t be one from ¬xi to xi, which would be a path from true to false. There also can’t be any
path from a true vertex to xi: if there was, the by the outer-loop invariant, xi would have been true, so
in particular assigned already. So setting xi = false doesn’t violate the inner-loop invariant. The case of
a path from ¬xi to xi is similar. If no paths exist....................................................................
The inner-loop invariant holds at each step of the inner loop, since by assining a variable to be true if it
had an in-neighbour that was true can’t produce a true⇒ flase, unless the vertex had an out-neighbour
that was false, in which case there was a path from a true node to a false one, contradicting the outer-loop
invariant. Since at the end of the loop, we’ can’t have implcations of form true ⇒ unassined (otherwise
the loop would have done one more lap) nor true ⇒ flase, due to the inner-loop invariant, all paths
emanating from true nodes most lead to true nodes. Thus, the outer-invariant is maintained.
Once the algorithm terminates, the last outer-loop invariant guarantees that we can’t encounter true ⇒
flase, so that all clauses must be satisfied.
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Horn formulas:
We now present another class of CNFs on which SAT can be solved in polynomial time, in fact in time
linear in the number of clauses:

Horn formulas:

A Horn clause is a disjunctive clause with at most 1 non-negated variable in its literals, and a
Horn formula is a conjunction of such Horn clauses. Solving SAT on such instances can be done in time
(polynomial and) linear in the number of clauses.

A typical Horn clause has form (¬x1 ∨ ... ∨ ¬xn ∨ xn+1), which is equivalent to (x1 ∧ ... ∧ xn)⇒ xn+1, in
the same train of thought we used in 2-SAT.
However, general Horn clauses can be cathegorized into three categories: those we just described, and
the "degenerate" cases of no negation, (xi) ≡ true ⇒ xi, and those of all negation, (¬x1 ∨ ... ∨ ¬xn) ≡
(x1 ∧ ... ∧ xn)⇒ false. With these reformulations, we can now start the proof.

Proof: The key remark is that if x1∧ ...∧xn is true for some assignment, then assignement that differ only
in the false values of that assignement will also be true. In a more sophisticted language, we can define a
partial order on {true, false}d by identifying it with {0, 1}d and using x ⩽ y (componentwise). Then if
(xϕ(1) ∧ ... ∧ xϕ(n)) is true and x ⩽ y, (yϕ(1) ∧ ... ∧ yϕ(n)) is true as well, for any injection ϕ : [n]→ [d].
Our algorithm will consist of starting with assingment x(0) = (false, ..., false) and iteratively taking an
unsatisfied clause, and satisfying by increasing the assignement, if this is possible. So if a clause of form(
x
(k)
ϕ(1) ∧ ... ∧ x

(k)
ϕ(n)

)
⇒ x

(k)
ϕ(n+1) is unsatisfied, we can simply set x(k+1)

ϕ(n+1) = true, so that its satisfied in the

next assignement, and will stay satisfied, as assignements only increase, so that all future x(k+q)
ϕ(n+1) = true,

and since anything ⇒ true is true. Note that setting x(k+1)
ϕ(n+1) = true increased the assignement, so that

the loop invariant of increasing assignements is maintained. If a clause true ⇒ x
(k)
i is unsatisfied we do

the same, and get the same result.
Only the case of an unsatified (xϕ(1) ∧ ...∧ xϕ(n))⇒ false is problematic. It turns out that a certain loop
invariant of our algorithm allows us to conclude that in this case, the formula is actually unsatisfiable. This
invariant is that if the formula is satisfied by an assignment y, then on all iterations, x(k) ⩽ y. This will al-
low us to conclude, as for y to satisfy (yϕ(1)∧...∧yϕ(n))⇒ false, one of the yϕ(i), say yϕ(j), must be false, so

that if x(k) fails to satisfy
(
x
(k)
ϕ(1) ∧ ... ∧ x

(k)
ϕ(n)

)
⇒ false, all x(k)ϕ(i) must be true, in particular x(k)ϕ(j) must be,

which contradicts x(k) ⩽ y at that coordinate. Hence if x(k) fails to satisfy
(
x
(k)
ϕ(1) ∧ ... ∧ x

(k)
ϕ(n)

)
⇒ false,

no satisfying assignment y can exist, and we can conclude with unsatisfiability.
To prove the loop invariant, note that it’s true at the initial step, as x(0) = 0 ⩽ y. For the step, assume
that x(k) ⩽ y. In that case, we use our initial remark, to see that when

(
x
(k)
ϕ(1) ∧ ... ∧ x

(k)
ϕ(n)

)
is true, so is

(yϕ(1) ∧ ... ∧ yϕ(n)). Now, if we are in the case of an unsatisfied
(
x
(k)
ϕ(1) ∧ ... ∧ x

(k)
ϕ(n)

)
⇒ x

(k)
ϕ(n+1), which is

only the case when
(
x
(k)
ϕ(1) ∧ ... ∧ x

(k)
ϕ(n)

)
is true and x(k)ϕ(n+1) is false, then we know that (yϕ(1) ∧ ... ∧ yϕ(n))

is true, and since it satisfies the clause by its definition, it must be the case that y
(k)
ϕ(n+1) is also true.

So setting x
(k+1)
ϕ(n+1) = true will maintain x(k+1) ⩽ y in this case. Next, if true ⇒ xi is unsatisfied, but

true ⇒ yi is, we must have xi = false and yi = true, so that setting xi to true in the next iteration
maintains the invariant.
So if a satisfying assignment exists, x(k) ⩽ y holds for all iterations until we encounter the case of an
unsatisfied (xϕ(1) ∧ ... ∧ xϕ(n))⇒ false. But such an encounter contradicts the existence of y.
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This algorithm has an intersting property. Since the satisfying assignement y was arbitrary, we have
that the output satisfies x ⩽ y for all such assignments, provided one exists, in which case the algorithm
terminates with an output. So the output is the smallest satisfying assignement for our order.

Random walks for SAT:
Worell Lecture 4, Extremal Combinatorics book chapter 23.1
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7.3 Binary decision diagrams

An interesting question is that of efficient storing truth tables or fast computation of a Boolean function.
For example, in p ∨ (q ∧ r), is there a data-structure representing this Boolean function that would allow
us to conclude that p = true implies the value true ?

An approach to this starts at representing a Boolean function by a binary decision tree, which we sequen-
tially simplify. The following definition will be a lot clearer from the coming examples and constructions.

Binary decision diagrams:

A binary decision diagram (BDD) for a Boolean function with repect to an ordering of the
Boolean variables is an acyclic digraph, where nodes are labeled with a variable and all non-sink nodes
have exactly 2 out-edges, one labeled "true" and the other "false". All its sinks are labeld "true" or
"false". The order on nodes induced by the acyclic digraph is compatible with the order of the labeling,
in the sense that node u can be a parent of v if the label of u is smaller then that of v. The BBD
represents the Boolean function in the following sense: if P is a dipath from a source to a sink (so a
maximal path), which contains nodes with the labels in a set W of variables, then all assignements of the
Boolean function, in which the variables of W have as truth values the labels of the edges they’re the tail
of in P , yield the same value, which is the value of the label of the sink end-point on P .

All Boolean functions have BBDs: we can use the "decision tree representation" of a Boolean function.
We build a binary directed tree with layers labeled with the same variable, in the order of the variable
order, and a last layer of sinks, who’s label corresponds to the value of the function under the assignement
corresponding to the path from root to leaf. For example, this is what we get for p ∨ (q ∧ r): All Boolean
functions have BBDs: we can use the "decision tree representation" of a Boolean function. We build a
binary directed tree with layers labeled with the same variable, in the order of the variable order, and a last
layer of sinks, who’s label corresponds to the value of the function under the assignement corresponding
to the path from root to leaf. For example, this is what we get for p ∨ (q ∧ r):

p

qq

rrrr

0 10 1 1 1 10

The question is if we can find a BDD with relatively few nodes.
There are ways in which BBDs can be "reduced", in the sense that we get a BBD representing the same
Boolean function, but with less nodes. The first type of reduction is to group all sinks according to
their label: we get at most two sinks with label 0 and 1, who’s in-edges are have as tails the nodes that
previously had an edge leading to a sink with that label. In our example, this lead to:
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p

qq

rrrr

0 1

We still have a BBD representing the function, as the constarints on the order, the out-degree and the
function representation where preserved.

Now, notice in our example the appearance of double-edges: if we’ve followed the path from p to that r,
then whatever edge we take next, we arrive a the same sink. This means that the value of the function,
conditioned on those values of p and q is independent of that of r. We can therefore delete that node,
letting the in-edges lead to the unique out-neighbour, in what’s our second type of reductions:

p

qq

r

0 1

In our example, we can apply this type of reduction again, so a to arrive at a diagram of 5 nodes only.
An intereseting quesion is whether the order of the variables mattered. Take the follwing order:
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r

qq

pppp

0 1 0 1 1 1 10

Then the first reduction yields:

r

qq

pppp

0 1

And the second (ignore the colors for now):

r

qq

ppp

0 1

We can still simplify thing, though with a little more work. Note that the subgraphs indicated by the
color are the essentially the same. We can group them in a third form of reduction to get:
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p

qq

r

0 1

In our example, we may perform one last reduction to get a representation of 5 nodes again.

However, in general, the number of nodes of different BDDs representing the same function can vary enor-
mously depending on the imposed order. For example, consider the function (p1 ∧ p2)∨ ...∨ (p2n−1 ∧ p2n).
It can be represented by the 3n node diagram, in the index order:

p1

p2
p3

p4

1

1
p2n−1

p2n

0
1

p2n

...

We can make this a 2n+ 2 node diagram by fusing the nodes indexed 1.

If we impose order 1 < 3 < ... < 2n − 1 < 2 < 4 < ... < 2n, then any BDD wrt. that order re-
quires at least 2n nodes. This is because knowing the values of the n odd variables doesn’t allow us to
conclude on the value of the function, as information on the even ones is necessary. Indeed, in a BBD
must contain a binary tree of n layers, where each layer is labeled by an odd variable.
This is partly because the BBD can’t skip odd variables, so that since the out-degree is always 2, we must
have an n layer binary tree. If the BBD skiped an odd variable 2k− 1, it wouldn’t represent the function,
as in the assignment pi = 0 for i ̸= 2k − 1 p2k−1 = 1 and p2k = 1, the function has value 1, while in the
assignment pi = 0 for i ̸= 2k − 1 p2k−1 = 0 and p2k = 1, the function has value 0. So if variable 2k − 1
wouldn’t appear, we’d get a contradiction as the path corresponding to pi = 0 for i ̸= 2k− 1 and p2k = 1
can’t lead to two values, yet the function does for different assignments (different p2k−1).
We can show this by induction. In the case n = 1, we can enumerate all candidates to BBDs and note
that only least number of non-sink nodes needed is 2 = 21. In the steps, disjoin on whether a hypothetical
BBD has nodes labeled 1 or not. If it does, then it must be a source, so that deleting it forms a BBD for
the subproblem on the rest of the variables with order 3 < ... < 2n − 1 < 2 < ...and since we know that
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the diagram can’t skip odd variables, we can use the induction hypothesis to deduce that the layers on
odd variables 3 < ... < 2n− 1 form a binary tree of 2n−1 nodes. FIX: find a source with an actual proof
first.
If it doesn’t, then the BBD cound’t distinguish between assignements 1, 1, 0, ..., 0 and 0, 1, 0, ..., 0, which
yield different function values, so this case can’t occur.

We will now elaborate the reduction of "fusing" similar parts of the diagram. We conside parts to be
similar if there is a graph isomorphism that preserves labels between them. It’s important that the sub-
graphs we’re talking about contain all the out-edges of their nodes. Otherwise, we’d allow isomorphisms
of same-labeled nodes labeled by variables. If we delete a copy of these isomorphic graphs, and link
all in-edges of the deleted copy to their image in the other copy, then we preserve acyclicity (if a cy-
cle appeared, we’d alreday have a cycle with the edges of the pre-image), the out-degrees of 2, and the
fact that maximal dipaths correspond to assignments and their value (the image of the path under the
identification-morphism is still maximal, and the truth labels on the edges and the sink are the same).
To test for such isomorphisms can be done as follows. We consider the graphs that are the induced by
the children of a node, and compare them layer by layer to graphs induced by the children of nodes that
have the same label as that node.

Finally, we discuss the question whether we can perform reductions indefinitely. The answer is no since
all reductions decrease the number of nodes in the BDD. If a BBD can’t be reduced further with the
reductions we mentioned, we call it reduced.

Building BDDs from connectors:
Our construction of a small BDD started from a massive binary tree that we successively reduced. This
slow construction partly defetes the purpose of BDDs. The main puprose of BDDs is to have BDDs for
a class of often used Boolean functions, from which more complicated ones are built, and on which we
which to compute values of assignments or solve SAT (which is equivalent to the function having a BDD
containing a sink labeled 1).
Assume we have a family of BDDs (di) for formulas (Fi), and we which to construct a BBD of a Boolean
function obtained by a finite sequence of connectors/operators ¬,∧,∨,⇒, .... Is there an efficient way to
proceed ?

We will see what to do one connector/operator at a time. For ¬, we can simply swap labels of the
sinks of the BBD to their logical opposite to get a BBD of the negated function. It’s a little more compli-
cated for connectors.
We’ll try to respect order, assuming the BBDs at dispositions follow the same order. We therefore look
at the sources of both BBDs in what will be a recursive step of our algorithm. We’ll call our recursive
algorithm merge(◦, d1, d2), where ◦ denotes the connector, and the di are the BBDs of the functions to
be connected with ◦.
If the sources are both labeled with a variable, and the same variable, then we build the new BBD by creat-
ing a source with that label, which will be the tail of a false-edge leading to the source of merge(◦, d′1, d′2),
where d′i is the graph of successors of the child along the false-edge of the root in di, as well as the tail of
a true-edge leading to the source of merge(◦, d′1, d′2), where the di′ is the graph of successors of the child
along the true-edge of the root in di. Assuming merge does it’s job on BDDs with less nodes, we can show
that in this case, we get a BBD of the connection of functions. Acyclicity and out-degree are relatively
easy to check, and to justify that this really represents of connection of the functions, take any assignment
and follow the first disjunction on the first variable, which is represented by the root. It will lead us to the
corresponding merge(◦, d′1, d′2), in which the d′i are the BBDs of the successors of the appropriate child.
By induction,
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COMPLETE: seek different sources then Worell and Huth n Ryan, because they don’t really prove stuff...
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7.4 DPPL

We present a variant of the DPLL algorithm (Davis-Putnam-Logemann-Loveland) for solving SAT on
CNFs. It relies on the notion of resolvents that we now present:

We’ll be working with a representation of CNFs as a set-system of literals. To each clause, we asso-
ciate the set of its literals, so for example (¬x ∨ y ∨ z) ≈ {¬x, y, z}.
The aim is to deduce clauses from other clauses, for example in the goal of reducing the number of clauses
representing the CNF, by merging them in a clever way. One such way is when two clauses C1 and C2

contain a literal l ∈ C1 and its opposite l ∈ C2. To satisfy them both, we disjoin on the assignment of the
variable of literal l: if l is true, then to satisfy C2, we must satisfy C2\l since l is false, and if l is true,
then to satisfy C1, we must satisfy C1\l since l is false.
We can group this as follows: consider the resolvent of C1 and C2 wrt. l, which is R = (C1\l)∪ (C2\l).
The resolvent is satisfyable precisely when C1 and C2 are simultaneously. When C1 and C2 are simulta-
neously satisfiable, one of them has a true literal that isn’t l or l (as in one, that literal must be false, but
since we assume the disjunction to be true, it must have a true literal): this literal will make the clause R
true. Conversely, if R is true, it must have a true literal in C1\l or C2\l (or both). If, for example, its in
C1\l, then if C2\l isn’t already satisfied, we can set l = true to satisfy C2, while keeping C1 satisfied.
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7.5 Solutions
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8 Computational/Numerical Algebra

8.1 Numerical linear algebra

Iterative solution methods, eigenvalue computation, gaussian method for quadratic forms, least squares
and singular value decompositions

Gaussian algorithm for quadratic form reduction:
We consider a quadartic form q(x) = xtAx =

∑
i∈[d]

aiix
2
i + 2

∑
i<j∈[d]

aijxixj , which we hope to bring in form

q(x) = (Mx)tB(Mx) =
∑
i∈[d]

bi

∑
j∈[d]

mijxj

2

for a diagonal B and a change of variable given by the in-

vertible M . The signs of the bi will then inform us if the quadratic form is in-/definite, positive/negative.
The idea Is to use algebraic relations to simplify expressions.

We will develop a recursive algorithm that recurses on the number of variables d, so that we prove
its properties by induction on d. For the base case d = 1, quadratic forms have the desired form, where
b1 = a11 and M = 1.

At a general iteration, we disjoin cases on whether we find an aii ̸= 0, wlog a11, or not. When a11 ̸= 0,

we can write q(x) = a11

x21 + 2

a11
x1

 ∑
2⩽j⩽d

a1jxj

 + q′r(x2, ..., xd) where qr(x2, ..., xd) =

d∑
i=2

aiix
2
i +

2
∑

2⩽i<j⩽d

aijxixj . Then, we can use (a+b)2−b2 = a2+2ab to rewrite a11

x21 + 2

a11
x1

 ∑
2⩽j⩽d

a1jxj

 =

a11

x1 + 1

a11

 ∑
2⩽j⩽d

a1jxj

2

−

 ∑
2⩽j⩽d

a1j
a11

xj

2

, so that for b1 = a11 andm1j =
a1j
a11

, and qr(x2, ..., xd) =

−

 ∑
2⩽j⩽d

a1j
a11

xj

2

+ q′r(x2, ..., xd), we have q(x) = b1

∑
j∈[d]

mijxj

2

+ qr(x2, ..., xd). We then recurse on

qr, which is a quadratic form of less variables. To see that M is invertible, note that the M =

(
1 ∗
0 Mr

)
where Mr is the matrix from the recursion on qr, which is invertible by induction.

To handle the case that all aii = 0, we either have a trivial quadratic form (set b = 0 and M = I), or some

aij ̸= 0, wlog a12. In that case, we express q(x) = 2
∑

i<j∈[d]

aijxixj as q(x) = 2a12x1x2+2x1

 ∑
3⩽j⩽d

a1jxj

+

2x2

 ∑
3⩽j⩽d

a2jxj

+ q′r(x3, ..., xd) where q′r(x3, ..., xd) = 2
∑

i<j∈[d]

aijxixj . We then factor (with correcting

term) the first part into
2

a12

a12x1 + ∑
3⩽j⩽d

a2jxj

a12x2 + ∑
3⩽j⩽d

a1jxj

−
 ∑

3⩽j⩽d

a2jxj

 ∑
3⩽j⩽d

a1jxj

,

and collect the last term in qr(x3, ..., xd) = −

 ∑
3⩽j⩽d

a2jxj

 ∑
3⩽j⩽d

a1jxj

− 2
∑

i<j∈[d]

aijxixj , so that
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q(x) =
2

a12

a12x1 + ∑
3⩽j⩽d

a2jxj

a12x2 + ∑
3⩽j⩽d

a1jxj

+ qr(x3, ..., xd).

Next, we use ab =
1

4

(
(a+ b)2 − (a− b)2

)
to express the first part as

1

2a12

a12x1 + ∑
3⩽j⩽d

a2jxj + a12x2 +
∑

3⩽j⩽d

a1jxj

2

+

a12x1 + ∑
3⩽j⩽d

a2jxj − a12x2 −
∑

3⩽j⩽d

a1jxj

2.

We get b1 and b2 from this, as well as M1∗ and M2∗ by doing the right associations. To see that M is

invertible, note that M =

a12 a12 ∗
a12 −a12 ∗
0 0 Mr

.

The power method for eigenvalue computation:
We consider a diagonalisable matrix A in dimension n tha isn’t the 0-matrix. We consider a basis

of eigenvectors (bi) of A, so that any vector v can be written as v =
n∑

i=1

vibi. We then can no-

tice the following: Av =
n∑

i=1

viλibi = λ
k∑

i=1

vi
λi
λ
bi + λ

n∑
i=k+1

vi
λi
λ
bi, where we’ve ordered eigenvalues

such that |λ1| = ... = |λk| > |λk+1| ⩾ ... ⩾ |λn| and where λ = λ1. More generally, we’ll have

Apv = λp

(
k∑

i=1

vi

(
λi
λ

)p

bi +

n∑
i=k+1

vi

(
λi
λ

)p

bi

)
. The fact that

∣∣∣∣λiλ
∣∣∣∣ < 1 for i > k hints at prop-

erties of a limit in p → ∞. If we focus on a coordinate of the vectors, say the first, then we have

(Apv)1 = λp

(
k∑

i=1

vi

(
λi
λ

)p

bi,1 +
n∑

i=k+1

vi

(
λi
λ

)p

bi,1

)
.

In the hopes of getting λ, we can study

(
Ap+1v

)
1

(Apv)1
= λ

∑k
i=1 vi

(
λi
λ

)p+1
bi,1 +

∑n
i=k+1 vi

(
λi
λ

)p+1
bi,1∑k

i=1 vi

(
λi
λ

)p
bi,1 +

∑n
i=k+1 vi

(
λi
λ

)p
bi,1

.

Here we must make additional assumptions. One assumption is that λ1 = ... = λk, which is in particular

the case when k = 1. In that case, we have

(
Ap+1v

)
1

(Apv)1
= λ

∑k
i=1 vibi,1 +

∑n
i=k+1 vi

(
λi
λ

)p+1
bi,1∑k

i=1 vibi,1 +
∑n

i=k+1 vi

(
λi
λ

)p
bi,1

p−→
∞

λ.
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8.2 Interpolation
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8.3 Symbolic integration
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8.4 Number theoretical algorithms

Cryptography, FFT ?
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8.5 Gröbner theory

In this section, we deal with the problem of solving systems of equations on multivariate polynomials.
We consider polynomials f ∈ R[(xi)i∈[n]] or f ∈ C[(xi)i∈[n]], which have form f =

∑
a∈S

cax
a, where we use

multi-index notation, so that S ⊆ Nn is a finite set and xa =
n∏

i=1

xaii , as well as ca ∈ R or ca ∈ C.

The solution space: affine varieties
The solutions to a system fi(x1, ..., xn) = 0 for i ∈ [m], if there are any, in the particular field, aren’t a
set of finite points anymore, as it was the case for univariate polynomials (non-zero ones). For example
for f(x, y) = x − y ∈ R[x, y], the solutions of f(x, y) = 0 form the line y = x. We can still get point-

solutions, as as in

{
x− y = 0

−x− y = 0
who’s only solution is (0, 0). There may also be no solutions, such

as in

{
x2 − y = 0

x− 1− y = 0
, which is the empty intersection of a parabola and a line, since x2 > x − 1 as

x2 − x+ 1 =

(
x− 1

2

)2

+
3

4
> 0.

Another example are the solutions of

{
xz = 0

yz = 0
, as polynomials of R[x, y, z], which are the union of the

x-y-plane z = 0 and the z-line x = y = 0, which isn’t really a surface or a curve. Further intuition can
be gained by the following example, where solution curves can sometimes be disconnected, as in the case
of
(
(x− 2)2 + y2 − 1

) (
(x+ 2)2 + y2 − 1

)
= 0, where solutions form two circles of radius one centered at

(±2, 0) respectively.
We’ll refer as the solutions of fi(x1, ..., xn) = 0 for i ∈ [m] as the affine variety V (f1, ..., fm).
Ex.G1: Can any set be an affine variety ?

Solution representation: parametrization
So what do we mean by "solving" such a system ? As in the case of linear systems, we can attempt to
parametrise the variety. For example, the solutions of x− y = 0 can be parametrised with t 7→ (t, t), and

for a more complicated example, those of x2 + y2− 1 = 0 can be parametrized with t 7→
(
1− t2

1 + t2
,

2t

1 + t2

)
(with some nice geometry), as

(
1− t2

)2
+ 4t2 = 1 + 2t2 + t4 =

(
1 + t2

)2, so that any point of the
parametrisation is on the circle, and conversely, by incerting t =

y

x+ 1
for (x, y) ̸= (−1, 0), we have(

1− t2

1 + t2
,

2t

1 + t2

)
=

(
(x+ 1)2 − y2

(x+ 1)2 + y2
,

2(x+ 1)y

(x+ 1)2 + y2

)
=

(
x2 + 2x+

(
1− y2

)
2x+ 2

,
(2x+ 2)y

2x+ 2

)
= (x, y) by us-

ing 1 − y2 = x2 so that the first coordinate simplifies to
x(2x+ 2)

2x+ 2
. The parametrization doesn’t reach

point (−1, 0), as
2t

1 + t2
= 0 implies

1− t2

1 + t2
= 1.

In general, we’ll look for a set or rational functions rk ∈ R((ti)i∈[p]) for k ∈ [n] such that for all
(t1, ..., tp) ∈ Rp that aren’t poles of an rk, we have (r1(t1, ..., tp), ..., rn(t1, ..., tp)) ∈ V (f1, ..., fm), meaning
the this point is a solution. Of course, immediate questions are how to find such parametrizations, how
to tell if there even are any, and tell if they cover all of the variety, or how much if not all of it.

The plan, version 1.
We briefly sketch the way we’ll find solutions to polynomial systems.
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Consider the example

{
xy2 − y + x = 0

xy − x2y2 − 1 = 0
: if we multiply the first row by x and add it to the second

in order to cancel out the term of high power, we get

{
x+ x3y = 0

x2 − 1 = 0
, so that the second row constrains

solutions to the union of lines x = 1 and x = −1. On the first line, the equations xy2 − y + x = 0 and
xy−x2y2−1 = 0 yield both y2 − y + 1 = 0, so that the points

(
1, 1±i

√
3

2

)
form solutions in C2 and there are

no real solutions with x = 1 in this case, and on the second line x = −1 we have equation y2 + y + 1 = 0,

so that we also get additional solutions (−1, −1± i
√
3

2
) in C2 and there are no real solutions.

In this example, we took a "polynomial-linear" combination that provided a equation of lower degree,
x2 − 1 = 0, that we could analyse more easily. This is similar to Gaussian elemination where we sought
combinations that cancel variables. We then checked if the solutions to the new equations, or a part of
them, were in fact solutions to the system.
We will devellop the division algorithm, which will allow us to obtain polynomials of lower degree. We’ll
define a notion of degree and of oder on it, that will relate to the idea of reducing the difficulty in our
system of equations. Gröbner bases are what will make the division algorithm work. Once we know how to
simplify the system of equations, we’ll discuss how to recover the actual solutions from the simplifications.

Ideals
In an attempt to generalise Gaussian elimination for linear systems, we’ll be interested in taking "polynomial-
linear combinations" of the lines of system fi(x1, ..., xn) = 0 for i ∈ [m], which are expressions of from
m∑
i=1

hifi, where the hi are any polynomials in R[(xi)i∈[n]]. The set of these expressions is called the ideal

generated by the fi, and is denoted by ⟨f1, ..., fm⟩.

They relate to the equations in the sense that for x ∈ V (f1, ..., fm) and f ∈ ⟨f1, ..., fm⟩, we have f(x) = 0.
The converse doesn’t hold, in the sens that solutions of f(x) = 0 may not be in V (f1, ..., fm), as the basic
example of f = x−y ∈ ⟨x, y⟩ shows, since f(1, 1) = 0, yet V (x, y) = {(0, 0)}. However, we can make a cer-

tain change of basis. For example, in

{
x2 − y = 0

−x2 − y = 0
, we have x2, y ∈ ⟨x2−y,−x2−y⟩ (sum and difference

divided by 2), and the solutions of

{
x2 = 0

y = 0
are the same as those of the original system. In general, if

we have two bases/generating sets such that ⟨f1, ..., fm⟩ = ⟨g1, ..., gq⟩, then V (f1, ..., fm) = V (g1, ..., gq)
(write one systems as linear combination of the other). In our example, ⟨x2 − y,−x2 − y⟩ = ⟨x2, y⟩ as we
can generators as scalar-linear combinations of the others.
Ex.G2: For a given set V , we can define the ideal of V to be I(V ) = {f : f(x) = 0, ∀x ∈ V }. Is it true
that ⟨f1, ..., fm⟩ = I(V (f1, ..., fm)) ?

Ordering
Our goal is to reduce the number of variables in the system by performing operations that lower the degree.
So the notion of degree and the order on it should reflect this idea. In multi-index notation, monomial are
represented by points of Nn. The lexicographic ordering of a > b⇔ ∃i ∈ [n] so that aj = bj for j < i
and ai > bi seems to be well suited, since for example monomials without the variable x1 will be of lower
degree then the monomials that do have x1, so that elimination of x1 is favoured by degree reduction.
Ex.G3: Show that this is an order on Nn. Show that a finite subset of Nn has a maximum in this order.
Depending on the indexing of variables, multiple lexicographic orderings are possible. In general, on can
work with the abstract notion of a monomial ordering, but we’ll work with the lexicographic ordering, and
introduce its properties when they are needed.
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The degree deg(f) of a polynomial f will be the multi-index that is greatest among the indices of the
monomials making up the polynomial. The leading monomial lm(f) of a polynomial f will be the
monomial attaining the maximum defining the degree. The leading coefficient lc(f) of a polynomial f
will be the coefficient of lm(f) in f . The leading term lt(f) of a polynomial f will be lc(f)lm(f).

The division algorithm
We’ll try to generalise the generalization of euclidean division to univariate polynomials. We’ll also extend
it to the possibility of having multiple divisors. For an f and divisors fi not all zero, we seek quotients qi

and remainder r such that f = r+

m∑
i=1

qifi. Instead of seeking particular properties of the remainder, we’ll

see what we can get from the generalisation of division in the univariate case. In that case, we successively
reduced the dividend by mutiples of the divisor by eliminating leading terms. In the multivariate and multi-

divisor case, we can check if an lt(fi) divides lt(f). If it does, we can write f =

(
f − lt(f)

lt(fi)
fi

)
+
lt(f)

lt(fi)
fi,

where
(
f − lt(f)

lt(fi)
fi

)
will be the candidate for the next iteration and which has lower degree then f , as

we’ll soon show. The part
lt(f)

lt(fi)
could be made to contribute to qi. In case that none of the lt(fi) divide

lt(f), we’ll make our lives easy and write f = (f − lt(f))+ lt(f), where (f − lt(f)) is the candidate of the
next iteration, and lt(f) will be attributed to the remainder. We perform these steps until the candidate

has become 0 (which it does, as we’ll soon show), so as to get an expression of form f = r +
m∑
i=1

qifi.

Summarising in a flow-chart:
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Is c = 0 ?

Initialise:
Candidate c = f
Quotients qi = 0
Remainder r = 0

yes
Done!

no

Does one lt(fi)
divide lt(c) ?

no

Augment r by lt(c)
Decrease c by lt(c)

yes

Augment qi by
lt(c)

lt(fi)

Decrease c by
lt(c)

lt(fi)
fi

Note that after each loop, we have f = c + r +
m∑
i=1

qifi, an invariant maintained by the loops. So if the

algorithm terminates, we’ll indeed have f = r+
m∑
i=1

qifi. The property of the remainder is that it’s either

zero, or none of its constituing monomials are divisible by any of the lt(fi), which is also a loop invariant.

We’ll now show that the algorithm terminates.
We’ll show that the degree of candiate c drops in each iteration, and that it can drop only finitely many
times. Indeed, in iterations where the remainder is augmented, c is decreased by its leading term, so that
the degree decreases. In iterations where the quotient is augmented, we have to show that the monomials

of
lt(f)

lt(fi)
fi have smaller multi-index then the leading term, which is lt(f), so that the degree of c decreases

in those iterations too. The fact that lt(fi)|lt(f) translates to ∃k, sxa = kxbtxc where lt(f) = sxa and
lt(fi) = txc, so that a = b + c. If d is the multi-index of any other monomial of fi then the leading one,

then c > d, so that a = c+ b > d+ b. Thus,
lt(f)

lt(fi)
fi has same leading term as f and its other monomials

have lower multi-index, so that f − lt(f)

lt(fi)
fi has lower degree then f .

119



Now, we’ll show that a sequence of decreasing multi-indices must eventually reach (0, ...0). Once that
degree is reached, c is a constant that will be accounted in the remainder in a last iteration, if it isn’t zero
already. The property we show is known as the well-ordering of the lexicographic order, and a formal proof
requires induction. In the univariate case n = 1, this is just the well-ordering of N. For the induction
step, we note that the elements in the sequence for which a1 has the same value must be finite. This
is due to the induction assumption, since the projection on the last coordinates in Nn−1 forms a lexico-
graphically decreasing sequence, which is finite by induction. So a1 can take the same value only finitely
many times in the sequence, after which it must decrease in value, so that eventually, a1 must reach value 0.

The plan, version 2.
Recall the big idea of solving polynomial systems: we take polynomial-linear combinations of the poly-
nomials defining the system, hoping that higher index monomials cancel out, preferably resulting in a
polynomial who’s indices are so low in the lexicographic context, that the number of variables has de-
creased, preferably to a single variable.
The problem is that there is little insight in getting these cancellations for arbitrary f1, ..., fm. What if
instead we had a base g1, ..., gq such that ⟨f1, ..., fm⟩ = I = ⟨g1, ..., gq⟩ (so we have same variety), which
had the property that for any f ∈ I, lt(f) would be divisible by some lt(gi) ? We would then have
insigth into how low of a degree the f ∈ I could have, as their leading term must be divisible by one
of the gi, so that deg(f) ⩾ deg(gi). If one of the gi is a univariate polynomial, then we would know by
gi ∈ ⟨f1, ..., fm⟩ = ⟨g1, ..., gq⟩ that we can get it as a polynomial-linear combination, so that solutions
would have to have their corresponding variable be among the roots of gi. If on the other hand none of the
gi have univariate leading term, we’d know that it’s pointless to search for a univariate polynomial-linear
combination of the f1, ..., fm, since its leading term would have to be divisible by a multivariate leading
term of some gi, which is impossible.
Note that such a basis g1, ..., gq would also have the property that the division of an f ∈ I by the g1, ..., gq
would always have remainder 0. Indeed, throughout the algorithm, c ∈ I as a polynomial-linear combi-
nation, so that the case of its leading term not being divisible by that of a gi, which would augment the
remainder, never occurs.
These bases will be Gröbner bases. We’ll now charcterise the property defining Gröbner bases, give some
of their properties and of course give an algorithm for finding them, showing that they do indeed exist.

COMPLETE: skip Dickson and Hilbert, and go directly to Buchberger ???
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8.6 Polynomial identity testing and applications

Consider the following problem. Alice and Bruno a part of a secret society. Members of the secret society
know a password, which allows members to certify that they’re part of the group. However, if Alice and
Bruno want to find out if the other is a member of the secret society, they can’t simply communicate the
password to each other, as they’d run the risk of the other lying about being in the society, and getting
their hand on the password by asking for it. How can they certify that they’re members to each other,
without divuging the password ?

Suppose the password is a sequence of numbers p1, ...pm. Alice and Bruno could start by fixing an ordering
of the sequence into multi-index notation, so that the sequence is for example index in the form pi,j,k.
They then form the 3-variate polynomial

∑
i,j,k

pi,j,kx
i
1x

j
2x

k
3. If Alice and Bruno have the same password, the

polynomials A and B formed this way should be equal. The key point is that they can test for equality
by evaluating the polynomials at different points. If the polynomials are equal, then they should evaluate
too the same. If one among Alice and Bruno is a liar, then for many evaluations, it seems unlikely that
the liar will always get the correct value, which will identify them as a liar. Also, if sufficiently few test
of this sort are performed, the liar can’t deduce the password from the test, as there won’t be enough
equations y =

∑
i,j,k

pi,j,kx
i
1x

j
2x

k
3 to determine the pi,j,k. The question is therefore, how likely is it for a

non-zero f = A−B to get a root of it when choosing some point at random ?

Schwarz-Zippel lemma:

We consider an n-variate non-zero polynomial f over a field F, of multidegree-sum bounded by d.
If we pick a point uniformily in the grid Sn for some set S ⊆ F of finite size |S| > d, then the probability

of getting a root of f is at most
d

|S|
. In particular, doing this for |S| = 2d (for an infinite field) for k

idependent times, and getting only roots, occurs with pobability at most 2−k.

The condition on d is that for all monomials
∏
i∈[n]

xmi
i of f , we have m1 + ...+mn ⩽ d. In the context of

the password, it means that slicing the password yields better results. Indeed, if the password has size 27,
we would have d ⩾ 27 in the univariate case, but by slicing it into 3 coordinates ranging in [3], we’d have
d ⩾ 3 + 3 + 3 = 9 for a 3-variate polynamial. However, the space on which we randomize would go from
|S| ⩾ 27 to |S3| ⩾ 729.

Proof: We’ll show that the number of roots of f in Sn is at most d|S|n−1, so that under uniform

probability, the probability of getting one is at most
1

|S|n−1
d|S|n−1 =

d

|S|
.

The proof of this is by induction on the number of variables n. For n = 1, d is at least the degree of f ,
and f has at most deg(f) roots (as it’s non-zero), so that there are at most d|S|0 roots.

For the step, we write f as f =

m∑
i=0

fix
i
n+1 where the fi are polynomials in the x1, ..., xn, and where

fm ̸= 0, in the polynomial sense (if no fi ̸= 0 existed, we’d have f = 0, opposite to our assumption). If

we fix the (x1, ..., xn) to some value (a1, ..., an) ∈ Sn−1,
m∑
i=0

fix
i
n+1 is univariate and has at most m roots,

unless it’s zero. The latter can only occur if all fi(a1, ..., an) = 0, ad in particular, (a1, ..., an) is a root
of fm. We can estimate how often this happens by our induction hypothesis. Indeed, if the multidegree
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of fm is m1, ..,mn, then by assumption on d, we had mi + ... +mn +m ⩽ d, so that by the induction
hypothesis applied to fm on Sn with d−m, we have at most (d−m)|S|n−1 possible (a1, ..., an) for which all
fi(a1, ..., an) = 0. In those cases, for any of the |S| choices of value for xn+1, we get a root (a1, ..., an, xn+1)
of f .

When this doesn’t happen, which may happen at most |S|n (all) times,
m∑
i=0

fix
i
n+1 has at most m roots.

So the total number of roots in Sn+1 is at most m|S|n+(d−m)|S|n−1|S| = d|S|n, which concludes the step.

COMPLETE: polynomial method for perfect matchings.
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8.7 Solutions

Ex.G1: No! for example, consider cone((1, 1)). Any P ∈ R[x, y] that vanishes on it satisfies P (t, t) = 0
for all t ⩾ 0. Since P (t, t) is a polynomial in one variable with infinitely many zeros, it must be the zero
polynomial, so that P (t, t) = 0 for all t ∈ R. So if a variety contains cone(1, 1), it must contain span(1, 1),
so that cone(1, 1) by itself is not a variety.

Ex.G2: We do have ⟨f1, ..., fm⟩ ⊆ I(V (f1, ..., fm)). Indeed, if f ∈ ⟨f1, ..., fm⟩, then f(x) = 0 for
x ∈ V (f1, ..., fm), since f is a combinationof the fi, so that f ∈ I(V (f1, ..., fm)). However, the converse
may not hold! A technical problem is for example displayed in ⟨x2⟩ for which I

(
V
(
x2
))

= {f : f(0) = 0},
so that x ∈ I

(
V
(
x2
))

, but x /∈ ⟨x2⟩, since multiplying by non-zero polynomials only raises the degree.

Ex.G3: Both a > b and a < b can’t hold together, as we’d reach a contradiction at the minimum
index. To see transitivity, by letting i be the index in a > b and j that in b > c, we have equality of
coordinates until k = min(i, j), where ak ⩾ bk and bk ⩾ ck with at least one strict, so that ak > ck and
hence a > c. For the existence of a maximum, assume the contrary, which yields a sequence of points
greater an greater, so that by finiteness, we’ll evetually get contradition a > a for some a in the set, by
transitivity.
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9 Basics on polyhedra

In this chapter, we develop the relevant notions on polyhedra used for linear and integer linear program-
ming. To motivate these notions, you may skip this chapter and come back to it when the relevant notions
and results turn up in the coming chapters.

9.1 Polyhedra

Convexity:
Let y1, ..., yn be a finite set of points. A convex combination of yi’s is given by:

∑
1≤i≤n

αiyi ∀ αi ∈ R≥0,
n∑

i=1

αi = 1

The convex hull of a set S is conv(S), the convex combinations of finite subsets of S.

Cones:
Let y1, ..., yn be a finite set of points. A conic combination of yi’s is given by:∑

1≤i≤n

αiyi ∀ αi ∈ R≥0

The conic hull of a set S is cone(S), the conic combinations of finite subsets of S.

Polytopes:

An H-polyhedron is P = ∩ni=1H
+
i where

Halfspace: H+ = (v ̸= −→0 ∈ Rd, α ∈ R) = {x ∈ Rd : ⟨v, x⟩ ≤ α}
Hyperplane: H = (v, α) = {x ∈ Rd : ⟨v, x⟩ = α}

so that P has form P =
{
x ∈ Rd : Ax ⩽ b

}
for some A ∈ Rm×d and b ∈ Rd.

(If P is bounded P = ∩ni=1H
+
i is a polytope)

An E-polyhedron is a P = conv(X) + cone(Y ), |X|, |Y | <∞, X, Y ⊆ Rd

(For polytopes, Y is empty)

They are actually the same:

Main Theorem of Polyhedra:

Let P ⊆ Rd. P is a H-polytope ⇔ P is an E-polytope.
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The proof is long and not of immediate interest to us. All that we’ll mention about it is that in its
constructive versions, the algorithms aren’t polynomial time and aren’t efficient in practice.

Examples: A d-cube is both the convex hull of all vectors with 0-1-coordinates, conv

(∑
S

ei : S ⊂ [d]

)
,

and the intersection
d⋂

i=1

(0 ⩽ xi ⩽ 1). To see this, notice that the points
∑
S

ei : S ⊂ [d] are in the inter-

section, so that by its convexity, conv

(∑
S

ei : S ⊂ [d]

)
⊂

d⋂
i=1

(0 ⩽ xi ⩽ 1); the back-inclusion is harder:

we use induction on the dimension, so we write (x1, ..., xd) = xd(x1, ..., xd−1, 1) + (1− xd)(x1, ..., xd−1, 0),
a convex combination of points which are in (d− 1)-cubes, and use the induction hypothesis.
A d-simplex is the convex hull of any d + 1 affinely independent points. The standard d-simplex is

conv(0, ei : i ∈ [d]) =

(
d∑

i=1

xi = 1

)
∩

d⋂
i=0

(0 ⩽ xi).

There is an analog version of these descriptions for cones:

(polyhedral) Cones:

An H-cone is a C = ∩ni=1H
+
i where

Halfspace: H+ = (v ̸= −→0 ∈ Rd, = {x ∈ Rd : ⟨v, x⟩ ≤ 0}
(vectorial) Hyperplane: H = (v, α) = {x ∈ Rd : ⟨v, x⟩ = 0}

A R-cone is a C = cone(X), |X| <∞, X ⊆ Rd

They are actually the same:

Main Theorem of Cones:

Let C ⊆ Rd. C is a R-cone ⇔ P is an H-cone.

One can relate cones and polyhedra via a technique called homogenization. We’ll show how the main
theorem for cones implies that for polyhedra, using this technique.
Given a V-polyhedron conv(V ) + cone(R), it’s points have form x = V λ + Rµ where λ, µ ⩾ 0 and

1tλ = 1. We can get a cone from this by lifting dimension: we have
(
x

1

)
=

(
V

1t

)
λ +

(
R

0t

)
µ where

λ, µ ⩾ 0 for points x in the V-polyhedron, which is now equivalent to
(
x

1

)
being in the V-cone generated

by
(
V

1t

)
and

(
R

0t

)
, which we call the V-homogenisation. The main theorem for cones then provides

an H-description Ay ⩽ 0 for this cone, so that x is in the V-polyhedron precisely when A

(
x

1

)
⩽ 0, or

equivalently A∗[d]x ⩽ −A∗(d+1), which is an H-description for polyhedra.
Conversely, given an H-polyhedron Ax ⩽ b, we can conisder it as an intersection of the cone Ax ⩽ bz with
z = 1. For reasons that will soon become clear we consider the H-homogenisation of the H-polyhedron
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given by the H-cone
(
A −b
0t −1

)(
x

z

)
⩽ 0 (we require z ⩾ 0) so that x is in the H-polyhedron precisely

when
(
x

1

)
is in the H-cone

(
A −b
0t −1

)(
x

z

)
⩽ 0. Again with the main theorem for cones, the latter H-cone

has V-description cone(E), so that x is in the H-polyhedron precisely when
(
x

1

)
= Eλ for some λ ⩾ 0. In

order to have a convex combination appear, we rescale E to
(
V R
1t 0t

)
by rescaling the comlumns of E for

which e(d+1),k > 0 by
1

e(d+1),k
. This is why we required z ⩾ 0: it ensures that the case e(d+1),k < 0 doesn’t

appear. If we then resacle λ to λ′ by λ′k =
1

e(d+1),k
λk, then we still have λ′ ⩾ 0 and

(
x

1

)
=

(
V R
1t 0t

)
λ′.

The latter shows x is a sum of a convec combination of V and a conic one of R. Therefore, this is a
V-description of the H-polyhedron.

We conclude with the Farkas Lemmas, which we prove in the computational geometry chapter.

Farkas:

Cones: For a V-cone BRd
+ and a vector b, either b ∈ BRd

+ or he can separate b from BRd
+ by a

vectorial hyperplanes, so that htb < 0 and htBRd
+ ⩾ 0.

Polyhedra: An H-polyhedron Ax ⩽ b is either non-empty, or we can find a contradictory combina-
tion of its defining equations in the form of λtA = 0 and λtb < 0 for some λ ⩾ 0.

Standard: A polyhedron in standard form Ax = b, x ⩾ 0 is either non-empty, or we can find a
contradictory combination of its defining equations in the form of λtA ⩾ 0 and λtb < 0 for some λ.
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9.2 Faces

The intuitive notion of a face of a polyhedron can be made formal through the following definition: a
face is a part of the polyhedron for which the polyhedron is on one particular side of it (we don’t cut the
polyhedron in half along it).

Faces of polyhedra:

A face of a polyhedron P is a subset F ⊆ P such that there is a hyperplane H for which P ∩H = F and
P ⊆ H+ (the polytope is in one of the halfspaces and meet the hyperplane in the face).
The dimension of the face is the dimension of the affine hull of the face.
Faces of dimension 0, 1 and d − 1 are called vertices, edges/rays (depending on if they’re bounded)
and facets respectively.

Remark: The hyperplanes defining the H-polytope may not define faces (for example, if a parallel hyper-
plane is included in a first ones halfspace): those are redundant. Hyperplanes defining a face might not be
unique: for example, The edge (0, 0)× [0, 1] of the unit cube is defined by the planes given by 2x+ y ⩾ 0
and 2y + x ⩾ 0.

Ex.F1: Prove that the normal vectors of the hyperplanes defining a face form a cone.

Characterisation of faces (H-version):

If a halfspace ctx ⩽ d is valid for a polyhedron Ax ⩽ b, then there is a λ ⩾ 0 such that c = Atλ and d ⩾ btλ.
In addition if a halfspace ctx ⩽ d is face defining for a polyhedron Ax ⩽ b, then there is a λ ⩾ 0 such that
c = Atλ and d = btλ (c is in the cone of the normals to the hyperplanes defining the polyhedron). More

precisely, we have two descriptions of the face:

{
x :

{
Ax ⩽ b

ctx = d

}
=

{
x :

{
Ax ⩽ b

Asupp(λ)∗x = bsupp(λ)

}
.

Conversley, for all I ⊆ [m], the sets

{
x :

{
Ax ⩽ b

AI∗x = bI

}
form faces (possibly empty or all of the

polyhedron). In particular, there are at most 2m faces.

Proof: Note the similarity of the expressions of the first statement to those of the Farkas lemmas. We
prove the first statement by contraposition. So we start from the non-existance of a λ ⩾ 0 such that
c = Atλ and d > btλ. In order to use Farkas, we homogenize this statement into the non-/existence of

a (λ, s) ⩾ 0 such that
(
At −c

)(λ
s

)
= 0 and

(
bt,−d

)(λ
s

)
< 0. The two are equivalent since s > 0,

otherwise 0 = Atλ and 0 > btλ would make the polyhedron empty (the system infeasible), so that we
can divide by s and get a new λ ⩾ 0 for which c = Atλ and d > btλ. Now, with polyhedron-Farkas, we

get the existence of a solution to
(
A

−ct

)
x ⩽

(
b

−d

)
, or equivalently Ax ⩽ b and ctx ⩾ d, so that x is a

point of the polyhedron of on the other side of the halfspace, preventing ctx ⩽ d from being valid but not
face-defining.
For the face-defining case, we show that there is a λ ⩾ 0 such that c = Atλ and d ⩾ btλ and exclude the
case d > btλ. Indeed, if d > btλ, then for a point x on the face, so ctx = d, we have ctx = λtAx ⩽ btλ < d,
an immediate contradiction. To show the first part, we use contradiction and to link the statement to
Farkas, we introduce slack: we start from the assumption that ctx ⩽ d is face-defining and that there is a
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λ, s ⩾ 0 such that c = Atλ and d = btλ+s. Rewriting this as
(
At 0
bt 1

)(
λ

s

)
=

(
c

d

)
, with λ, s ⩾ 0, we can

use standard-Farkas to get h such that ht
(
At 0
bt 1

)
⩾ 0 and ht

(
c

d

)
< 0, or equivalently Ah[d] ⩾ −hd+1b,

hd+1 ⩾ 0 (crutially, due to slack), and cth[d] < −hd+1d. Dividing by −hd+1 ⩽ 0 if it’s non-zero then
provides h′ such that Ah′ ⩽ b and cth′ > d, so that the plane is not even valid. If −hd+1 = 0, we get
A(−h[d]) ⩽ 0 and ct(−h[d]) > 0, and since the polyhedron is non-empty and since ctx ⩽ d is face defining,
for any point y on that face, A(y − h[d]) ⩽ b and ct(y − h[d]) > d, an immediate contradiction.

Now, for the points on the face defining plane we have

{
Ax ⩽ b

ctx = d
which rewrites to

{
Ax ⩽ b

λtAx = λtb
,

we must have Asupp(λ)∗x = bsupp(λ). To see this, assume that there is an i ∈ supp(λ) such that
Asupp(λ)∗x ̸= bsupp(λ): since x is in the polyhedron, we have Asupp(λ)∗x < bsupp(λ), but then summing with
λ ⩾ 0 and λi > 0 we have λtAx < λtb, contradicting the choice of x. Conversely, if Asupp(λ)∗x = bsupp(λ),
then λtAx = λtb as the terms not indexed by supp(λ) vanish.

We now show that for all I ⊆ [m], the sets

{
x :

{
Ax ⩽ b

AI∗x = bI

}
form faces. We’ll build a support-

ing hyperplane with ct =
∑
i∈I

Ai∗ and d =
∑
i∈I

bi: indeed, ctx =
∑
i∈I

Ai∗x ⩽
∑
i∈I

bi = d for all points of the

polyhedron Ax ⩽ b, and for those points for which AI∗x = bI , there is actually equality.

Characterisation of faces (V-version):

For a polyhedron P = cone(V ) + cone(R) and a face F with defining halfspace ctx ⩽ d of it, we
can find index subsets I and J such that F = cone(V∗I) + cone(R∗J), where V∗I =

{
V∗i : c

tV∗i = d
}

and
R∗J =

{
R∗j : c

tR∗j = 0
}
. We also note that ctR ⩽ 0.

Proof: Indeed, cone(V∗I) + cone(R∗J) ⊆ F as they are in P and satisfy ctx = d (convex combination
and definitions). Next, note that we must have ctR ⩽ 0. Otherwise, if ctR∗j > 0, then for large enough
s, we’ll have ct(V∗1 + sR∗j) > d contradicting validity of the hyperplane. If we decompose elements of F
according to cone(V )+ cone(R), if one of the terms (with positive scalar) satisfied ctV∗i < d or ctR∗j < 0,
then the sum would be < d, contradicting the fact that its one the face defined by ctx = d, so actually
F ⊆ cone(V∗I) + cone(R∗J).

Note that the converse doesn’t hold: not every cone(V∗I) + cone(R∗J) is a face of P . For example
consider conv((1, 0), (0, 0), (0, 1)) + cone(1, 1), where (0, 0) + cone(1, 1) isn’t a face.

Vertices:

Vertices can’t be the convex combination of other points of the polyhedron.
A polytope is the convex hull of its vertices.
The set of hyperplanes of the H-polyhedron of dimension d that a vertex is in has size at least d.
There are finitely many vertices.

Proof: We take a hyperplane defining vertex v, given by n·x = b. Then n·x < b for all vertices in the
polytope but for v, for which n· v = b. If we could write the vertex as a convex combination of other points
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of the polytope, v =
∑

sipi, taking the dot-porduct with n, bounding with si(n· pi) < sib and recalling

that
∑

si = 1, we arrive at a contradiction to n· v = b. So v isn’t a combination of other points.
By the main theorem of polytopes, the vertices are in conv(S), for a point set S. Seeing as they can’t be
combinations of other points, the vertices must be included in S. The points in S are of two types: either
they are combinations of other points of S or they aren’t. By proving that those in the second case are
vertices, we can show that conv(S) = conv(V ) where V is the set of vertices.
So if s /∈ conv(S\s), the separation theorem gives us a hyperplane passing through s and such that
conv(S\s) is in one of the open halfspaces of it. This hyperplane defines s as a vertex.

To get the next claim, we’ll prove that the set of hyperplanes of the H-polytope of dimension d that
a vertex is in are such that their normal vectors span Rd: therefore, there must be at least d such vectors,
meaning d such hyperplanes.
If this wasn’t the case, then for normal hyperplanes ni·x ⩽ bi such that for the vertex v, ni· v = bi, the
system given by the ni·x = 0 would have a solution space of dimension 1 at least. So if we take a non-zero
solution y to it, then we notice that v ± t.y verifies ni·x = bi and that for the other hyperplanes defining

the polytope it verifies Ni·x ⩽ Bi for t ∈
[
max
Ni·y<0

(
Bi −Ni· v
Ni· y

)
, min
Ni·y>0

(
Bi −Ni· v
Ni· y

)]
(for v + t.y, and

similarly for v − t.y). This means that we can choose a t > 0 such that the v ± t.y are in the polytope.
But v is then the midpoint (convex combination) of the segment with endpoints v± t.y, which contradicts
the fact that it’s a vertex.
The converse is true in a certain sense. If the ni span Rd, the the system ni·x = bi has a unique solution.
If this solution v is in the polytope (= it verifies the other Ni·x ⩽ Bi) then it’s a vertex by our previous
arguments, since it can’t be the convex combination of other points of the polytope: if v =

∑
sixi, then

ni·x ⩽ bi, ni· v = bi and the nature of scalars require that ni·xi = bi, contradicting uniqueness of the
solution.

Finally, this last condition allows us to prove that there are finitely many vertices: there are only finitely
many ways of choosing d hyperplanes of the H-polytope so that their normal vectors span the space, each
such way defining a vertex. □

Remarks: A polyhedron may not have any vertices. For example, the polyhedron given by y ⩾ x
and y ⩾ −x in R3 has no vertices, as the H-description has only 2 hyperplanes, while 3 are necessary. The
next definition will investigate this phenomenon.
Also, a vertex of a d-polytope may be in more then d hyperplanes. For example, the top of an Egyptian
pyramid, which is a 3-polytope, is in 4 hyperplanes.

A point that isn’t the convex combination of any other points of the polyhedron is called an extreme/al
point. One can show with separation theorems that extreme points of a polytohedron are vertices.

Lineality space and recession cone:

The lineality space of a cone C is the set of directions of lines contained in the cone
L(C) = {x : lin(x) ⊆ C}. For an H-cone C = {x : Ax ⩽ 0}, they are L(C) = {x : Ax = 0}.
The lineality space is a vector space and a face of the cone. It’s included in every other face of the cone,
so that all faces have larger dimension then it.
The lineality space of a non-empty polyhedron P in H-description Ax ≤ b is L(P ) = {x : Ax = 0}.
Every (non-empty) face of P (including itself) contains a translate of the lineality space of P .
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Polyhedra with lineality space {0} are called pointed.

One can also define the recession cone rec(P ) of a polyhedron P that represents the directions
such that a ray in this direction is contained in P : rec(P ) = {y : ∃x ∈ P, x + t.y ∈ P,∀t ⩾ 0}. In
particular, on can see that L(P ) = rec(P ) ∩ (−rec(P )). In H-description, rec(P ) = x : Ax ⩽ 0
For V-description P = conv(V ) + cone(R), we have rec(P ) = cone(R).

Indeed, if A(b + t.x) ⩽ 0, it must be that Ax = 0, otherwise some values of t lead to a contradiction.
Ax = 0 is a vector space that can have arbitrary dimension, depending on A.
To see that it’s a face, we consider the cone of the normal vectors of A given by (Ai∗)

t: for a =
∑

(Ai∗)
t,

a·x ⩽ 0 on the cone and a·x = 0 precisely on the lineality space, it requires that Ax = 0.
Finally, to see that L(C) is in any other face of C, consider the face F of C defined by hyperplane n·x ⩽ b.
Then since C is a cone and since n·x ⩽ b must hold on all of C, n·x = 0 or b = 0, for otherwise n· (t.x) ⩽ b
leads to a contradiction of signs by letting t ∈ [0,∞) vary. But since the hyperplane intersects the cone,
there is some x ∈ C such that n·x = b, so in any case, b = 0.
In our final step, we prove that n ∈ cone

(
(Ai∗)

t
)

so that Ax = 0 implies n·x = 0, meaning that x ∈ F
and so L(C) ⊆ F . If this wasn’t the case, we can use the Faraks lemma (which is based on the separation
theorem) to get the existence of an x such that xtAt ⩽ 0 and x·n > 0. The first inequation rephrases to
Ax ⩽ 0, so that x ∈ C: since x·n > 0, we contradict n·x ⩽ b.

For the lineality space of a polyhedron, not that if x is some point of P and y ∈ L(P ), then x + y ∈ P
(add the systems). If a face is defined by the valid inequality ctx = d so that ctx ⩽ d for the polyhedron,
then take any y ∈ L(P ) and assume for contradiction that cty ̸= 0: then since x± y are in the polyhedra,
one of them must verify ct(x± y) > d, contradicting the validity of the hyperplane. So cty = 0 and hence
ct(x+ y) = d, showing that its on the face.

To see that rec(P ) = {y : Ay ⩽ 0}, note that {y : Ay ⩽ 0} ⊆ rec(P ) since for any x ∈ P and
λ ⩾ 0, we have A(x + λy) ⩽ b + λ.0. Now assume for contradiction that there is a y ∈ rec(P ) such
that there is a line i for which Ai∗y > 0, then for large enough λ for a given x ∈ P , Ai∗(x + λy) > b,
contradicting the definition of y ∈ rec(P ).
To show rec(P ) = cone(R), note that rec(P ) ⊇ cone(R), since t.cone(R) ⊆ cone(R) for t ⩾ 0. For
rec(P ) ⊆ cone(R), we consider y ∈ rec(P ) and assume for contradiction that y /∈ cone(R). Then by
Farkas, we can separate y from cone(R) by a hyperplane hty < 0 and htR ⩾ 0. By noting that for
all x ∈ P , htx ⩾ min

i

(
htV∗i

)
(htR ⩾ 0 and the minimum of htV λ where λ is in the standard simplex)

we get a contradiction to x + t.y ∈ P for all t ⩾ 0 by considering t =
|mini

(
htV∗i

)
|+ |htx|

|hty|
⩾ 0, as

ht(x+ t.y) = htx−
(
|min

i

(
htV∗i

)
|+ |htx|

)
< min

i

(
htV∗i

)
.

Proposition:

If P is non-empty and pointed, then all its faces contain a vertex (of themselves and therefore of
P too).

Proof:
We’ll use the fact that vertices and extreme points are the same. We’ll first show that extreme points
of face F are extreme points of the polyhedron P . If we write the convex combination x =

∑
skyk for
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yk ∈ P and sk > 0, and face F is given by a·x ⩽ b, then if we had a· yk < b for some index, then bounding
a·x =

∑
sk(a· yk), we’d get a·x < b, so that x couldn’t have been on the face. So a· yk = b, meaning

yk ∈ F , so that for an extreme point of the face x =
∑

skyk, we have yk = x, making x an extreme point
of the polyhedron.
We can then prove the proposition by induction on the dimension. This is because faces are lower di-
mensional polyhedra, so the if we prove that a non-empty pointed polyhedron has a non-empty face, then
since this faces lineality space is a subspace of the polyhedron’s one, the face is also pointed and induction
hypothesis provides an extreme point on it, which will also be an extreme point of the polyhedron.
If P is non-empty and pointed, the take one of it’s points x and some direction y: as it’s pointed the line
in direction y passing through x can’t be contained in all of the polyhedron, meaning that at some point
z on it, z must verify the system of the H-description of the polyhedron with at least one tight inequality.
Since that tight inequality defines a face, z is on that face and the face is non-empty.
The base case of the induction is the 0-dimensional one which is true by definitions.

We now focus on a particular type of polyhedra given by H-description

{
Ax = b

x ⩾ 0
, with A ∈ Rm×n of

full row rank m < n, as this type of polyhedron is important for solving LPs.

This is indeed a polyhedron as we can describe it with

 A
−A
−I

x ⩽

 b
−b
0

 where we’ve used the trick

x = y ⇔

{
x ⩾ y

x ⩽ y
. Its lineality space is therefore ker

 A
−A
−I

 = ker(I) = {0}, so that such polyhedra

are always pointed. In particular all their faces have vertices, which we now characterise:

Proposition:

The vertices of polyhedra of form

{
Ax = b

x ⩾ 0
are the solutions to

{
A∗BxB = b

x[n]\B = 0, x ⩾ 0
for some subset

B ⊂ [n] of size |B| = m (called a basis) so that the colunms (A∗j)j∈B are linearly independent, so that
xB = A−1

∗Bb, x[n]\B = 0 and x ⩾ 0.

Proof: As we’ve seen in the previous general characterisation of vertices, the vertices of

{
Ax = b

x ⩾ 0
must

be in at least n hyperplanes who’s normal vectors span all of the space. Since any point of the polyhedron
is already in the m hyperplanes Ai∗x = bi, there are at least n −m coordinates so that xi ⩾ 0 is tight,
for a vertex. Since by the previous general characterisation of vertices the normal vectors should span
the space, and A has full row rank m, we can complete the rows of A into a base of the space with unit
vectors. If the coordinates of these unit vectors are in a set S ⊆ [n]\{i : xi > 0} of size |S| = n−m, then

the vertex x verifies

 A
eti∈S

...

x =

(
b
0

)
, where

 A
eti∈S

...

 is a square matrix of full row rank. This matrix

therefore also has full column rank, meaning that it’s columns are linearly independent. We now set B to

be [n]\S. For B, the latter means that the columns
(
A∗j
0

)
for j ∈ B are linearly independent, so that

actually the A∗j are linearly independent. Since we chose B so that |B| = n− |S| = m, we’ve finished the
first part of the proof. Note that there may have been multiple choices for S (and therefore for B) since
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the vertex could have been in more then n−m hyperplanes of form xi = 0.

For the converse, we consider a solution to

{
A∗BxB = b

x[n]\B = 0, x ⩾ 0
for some subset B ⊂ [n] of size |B| = m

(called a basis) so that the colunms (A∗j)j∈B are linearly independent. This is an extreme point as for
any convex combination x =

∑
skyk, the condition yk ⩾ 0 and x[n]\B = 0 forces (yk)[n]\B = 0, so that

Ayk = b becomes A∗B(yk)B = b, which has a unique solution as the (A∗j)j∈B are linearly independent, so
that x = yk.

Minimal proper faces and characterisation of the recession cone:

Proof: Consider any y ∈ rec(P ), and we denote by eq(y) the line for which Ay ⩽ 0 is tight. By the

characterization of faces,

{
Az ⩽ 0

Aeq(y)z = 0
is a face of rec(P ), which is non-empty as it contains y. If

y ∈ L(P ), we get the result. Otherwise, the face

{
Az ⩽ 0

Aeq(y)z = 0
contains a minimum proper face, and

hence one of the yk. Since yk /∈ L(P ) by assumption, there is a line i /∈ eq(y) such that Ai∗yk < 0. We
now consider y − λyk for λ ⩾ 0. For some pivoting λ > 0, we’ll have A(y − λyk) ⩽ 0, Aeq(y)(y − λyk) = 0

and Aj∗(y − λyk) = 0 for some j ∈ [m]\eq(y), because

{
Ayk ⩽ 0

Aeq(y)yk = 0
and A(−λyk) ⩾ 0. For this

value, y − λyk, will be a point of the recession cone, but with |[m]\eq(y − λyk)| < |[m]\eq(y)|. If we
reiterate this procedure on y − λyk, and so on, getting expressions of form y −

∑
λkyk along the way,

we’ll eventually end up at y −
∑

λkyk ∈ L(P ), since eventually |[m]\eq
(
y −

∑
λkyk

)
| = 0. But then

y =
∑

λkyk + L(P ), which is the desired result.

Related to the previous is the notion of extreme rays:

Extreme Rays:

We consider a pointed cone Ax ⩽ 0, where this description is irredundant.
An extreme ray of this cone is a point that can’t be written as a conic combination of other, non-colinear
rays of the cone. We often consider rays up to positive scaling.
We can characterise rays as follows: r is an extreme ray ⇔ Ar ⩽ 0 and for eq(r) = {i : Ai∗r = 0}, the

space Aeq(r)∗x = 0 is 1-dimensional, aka. rank(Aeq(r)∗) = d− 1. In particular, there are at most
(

m

d− 1

)
extreme rays.
Also, the extreme rays form the unique minimal and minimum generating set of the cone in V-description.

To prove the properties of extreme rays, we need the following lemma:

Rays:

A face F of the cone of dimension k ≥ 2 given by

{
Ax ⩽ 0

AI∗x = 0
for some I ⊆ [m] contains (at least) k
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linearly independent rays/points ri such that for k−1 of them I ⊆ eq(ri) and rank(AI∗) < rank(Aeq(ri)∗).
Also, any ray r ̸= 0 on the face of dimension ⩾ 2 for which I = eq(r) can be written as a conic combination
of two rays of the face r1, r2 for which eq(r) ⊆ eq(ri) and rank(Aeq(r)∗) < rank(Aeq(ri)∗).

Proof: Indeed, we take a point r ̸= 0 on F , which we complete to a basis of AI∗x = 0 with b2, ..., bk.
These basis vectors may not be on the face, but we can use them to get points on the face by considering
ri = r + sibi for some well-chosen si. Then r, r2, ..., rk still will be linearly independent, but now on the
face. It turns out that it will be more advantageous for the rest of the proof if we choose none of the bi to
be on F : this can be done by taking their opposite/antipodal if they are in F , as this point won’t be in
F , which is pointed as part of a pointed cone.
To get Ari ⩽ 0⇔ siAbi ⩽ −Ar, knowing that AI∗bi = 0 and there is some j for which Aj∗bi > 0, we can

set si = min

(
(−Ar)j
(Abi)j

: (Abi)j > 0

)
⩾ 0 as 0 ⩽ −Ar to get the job done: then siAbi ⩽ −Ar will be valid

on lines I as they’re both zero, on lines for which Aj∗bi ⩽ 0 as si ⩾ 0 and 0 ⩽ −Ar, and finally on the
lines for which Aj∗bi > 0, by definition of si.

Note that for the latter points, at the line j where min

(
(−Ar)j
(Abi)j

: (Abi)j > 0

)
is attained, Aj∗ri = 0, so

that I ⊆ eq(ri). Furthermore, Aj∗ can’t be spanned by the other rows of I since AI∗bi = 0 but Aj∗bi > 0.
So for these ri, rank(AI∗) < rank(Aeq(ri)∗).

For the second part of the lemma, we do a similar construction. The difference is that we slide r
along a vector v ̸= 0 of AI∗x = 0, such that nor v nor −v are in the cone. Showing the existence of
such a vector is surprisingly a bit difficult. We consider the hyperplane defining the origin as a face:∑

i∈[m]

Ai∗

x = 0, so that for all points in the cone

∑
i∈[m]

Ai∗

x ⩽ 0, with equality only at the origin.

We pick any v ̸= 0 on the intersection of that hyperplane with AI∗x = 0 (which can be done as AI∗x = 0
has dimension greater then 1): then −v ̸= 0 is also on the intersection, and none of them can be in the

face. Now, we consider r1 = r + s1v with s1 =

(
min

(
(−Ar)j
(Av)j

: (Av)j > 0

))
and r2 = r + s2(−v) with

s2 =

(
min

(
(−Ar)j
(−Av)j

: (−Av)j > 0

))
, which by similar arguments to the first part of the proof have the

desired properties of the lemma. To see that r is a conic (even convex) combination of them, note that
r =

s2
s1 + s2

r1 +
s1

s1 + s2
r2, if s1 + s2 > 0. The case si = 0 occurs if (Ar)j = 0 for some j /∈ I, but by

assumption I = eq(r), so this can’t happen.

We can now turn to the properties of extreme rays. If Aeq(r)∗x = 0 is 1-dimensional, then for any conic
combination r =

∑
λixi where the xi are in the cone and λ > 0, since the xi must be in Aeq(r)∗x = 0

(otherwise Aj∗r < 0 for some j ∈ eq(r)), the xi have form xi = µir, where µ ⩾ 0 (compute and rewrite
Aj∗xi for any j /∈ eq(r)). So r is a extreme ray. Conversely, we use the contrapositive: if the Aeq(r)∗x = 0
dimension ⩾ 2, then so does the associated face by the previous lemma, and we can use the points r1, r2
of the previous lemma to write r as a conic combination of non-colinear points (if they where colinear, so

would r and v be, but v is in

∑
i∈[m]

Ai∗

x = 0 while r isn’t, and both are non-zero), so that r isn’t an

extreme ray. In particular, the extreme rays are determined by AI∗x = 0 for rank(AI∗) = d− 1, so that
we can check all I ⊂ [m] of size d− 1 for this property to find the extreme rays.
We can reiterate this decomposition on the terms from the lemma, as long as the terms are not extreme
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rays. At each iteration k, the rank of Aeq(r(k))∗ increases, so that it will reach d or d − 1, the first case
corresponding to the origin and the second to an extreme ray. Since the minimum rank of the matrices
associated to the eq of the terms increases at each iteration, there are at most d iterations, so that the
decomposition will eventually reach a sum with terms made of extreme rays only.
Finally, let’s prove that the extreme rays form a minimum and minimal generating set of the cone. Any
generating set has to contain the extreme rays, as they generate the extreme rays in particular, which can
only be generated by themselves. Next, the extreme rays generate the cone, as any ray can be written as
a conic sum of them, by the previous paragraph.

Adjacency of rays:

We consider two extreme rays r1, r2 to be adjacent if the minimal face of the cone containing
both, given by A(eq(r1)∩eq(r2))∗x = 0, contains no other extreme ray, or equivalently, has dimension two.

Proof: By the characterization of faces, any face has form

{
Ax ⩽ 0

AI∗x = 0
. If it contains r1 and r2, then

we must have I ⊆ eq(ri) for both and so I ⊆ eq(r1)∩ eq(r2). Therefore

{
x :

{
Ax ⩽ 0

A(eq(r1)∩eq(r2))∗x = 0

}
⊆{

x :

{
Ax ⩽ 0

AI∗x = 0

}
, and since the first set is a face by the characterization of faces, it’s the minimal face

containing r1 and r2.
We show the equivalence of notions. If the face has dimension two, then r1 and r2 generate it, as they from
an affinely independent triple with the origin ( distinct extreme rays aren’t colinear) and any point on the
face must actually be a conic combination of the two, since eq(r1) ⊈ eq(r2) and eq(r2) ⊈ eq(r1)(otherwise
they belong to the same one dimensional space due to the characterisation of extreme rays), so that in
x = λ1r1 + λ2r2, by picking i ∈ eq(r1)\eq(r2) and j ∈ eq(r2)\eq(r1), and computing Ai∗x ⩽ 0 and
Aji∗x ⩽ 0, we get λ1, λ2 ⩾ 0 respectively. Hence, any other potential extreme ray on the face would be a
conic sme of these two, contradicting its nature.
Conversely, using the contrapositive, if the minimum face has dimension 3 or more, then by the previous
lemma, it also contains 3 linearly independent rays on it. They decompose into conic sums of extreme
rays, which also have to be on the face. We’ll show that 3 or more extreme rays are necessary in the
decompositions to satisfy linear independence. If the points were x = x1r1 + x2r2, y = y1r1 + y2r2 and
z = z1r1+ z2r2, then by linear independence, x, y generate span(r1, r2), so also z, which is supposed to be
independent from them. So a third extreme ray is necessary on the face, hence the rays aren’t adjacent.
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9.3 Polarity/Duality

Definition:

The dual or polar of a cone C is defined by C∗ =
{
y : ytx ⩽ 0,∀x ∈ C

}
. It’s also a cone and

represents all (vectorial) hyperplanes valid for the cone.

The fact that it’s a cone is shown by an interplay of V and H descriptions that often appears in duality
theory. If ytx ⩽ 0, ∀x ∈ C, then in particular for the finitely many generators ci of C, ytci ⩽ 0. Conversely,
if ytci ⩽ 0 for all generators, since the sign is preserved under conic combinations, ytx ⩽ 0,∀x ∈ C. Then
the ytci ⩽ 0 are an H-description of a cone.

Why it’s called dual:

C∗∗ = C

Proof: Note that for x ∈ C, xty ⩽ 0 for all y ∈ C∗, by definition of C∗: this statement is precisely the
definition of C∗∗, so that C ⊆ C∗∗. If there was a z ∈ C∗∗ not in C, Farkas provides us with htz > 0 and
htC ⩽ 0. Then h ∈ C∗ so that zth = htz > 0 prevents z ∈ C∗∗, hence z must be in C.

Explicit duals:

If C = {Bλ : λ ⩾ 0}, then C∗ =
{
a : atB ⩽ 0

}
.

If C = {x : Ax ⩽ 0}, then C∗ =
{
Atλ : λ ⩾ 0

}
.

Proof: For the first one, note that if atB ⩽ 0 then at(Bλ) ⩽ 0 for all λ ⩾ 0, so that a ∈ C∗ and
conversely, if a ∈ C∗ then atB ⩽ 0 by applying the definition with λ = ei. For the second one, we’ll write
C =

{
x : xtAt ⩽ 0

}
to see that C = D∗ for D =

{
Atλ : λ ⩾ 0

}
and use the fact that C∗ = D∗∗ = D.

If we consider the dual cone of the homogenisation of a polyhedron P , then for all its vectors y we
have yt(x, 1) ⩽ 0,∀x ∈ P . If we treat this dual cone like the homogenization of a polyhedron, then we can
consider the intersection with yd+1 = 1 of this cone, which gives points y such that ytx ⩽ −1, ∀x ∈ P .
However, since the homogenization cones are in xd+1 ⩾ 0, and (0,−1) satisfies yt(x, 1) ⩽ 0,∀x ∈ P , so
that the cone of the y contains parts of yd+1 ⩽ 0, it makes more sense to flip things around and consider
the intersection with yd+1 = −1.

Definition:

The dual of polar of a polyhedron P is defined by P ∗ =
{
y : ytx ⩽ 1,∀x ∈ C

}
.

It’s also a polyhedron.

It can be thought of as the set of valid hyperplanes for P , in the case that 0 ∈ int(P ), since ctx ⩽ d for

all P and in particular for 0 we get 0 < d, then y =
1

d
ct ∈ P ∗. We have a little difference:
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Why it’s called dual:

If 0 ∈ P , then P ∗∗ = P

Proof: Again, for x ∈ P , xty ⩽ 1 for all y ∈ P ∗, so that P ⊆ P ∗∗. For the converse, we use H-

homogenization, though a dual one: if P has homogenization H , the x ∈ P ⇔
(
x

−1

)
∈ H. For example

if we have description conv(V ) + cone(R) for the polyhedron, the homogenization is cone
((

V R
−1t 0t

))
.

Assume for contradiction that there was a z ∈ P ∗∗ not in P , then
(
z

−1

)
isn’t in the cone H and we

can use strict Farkas so as to find
(
ht, hd+1

)
such that

(
ht, hd+1

)( z

−1

)
> 0 and

(
ht, hd+1

)
H ⩽ 0. Since

0 ∈ P ⇔
(

0

−1

)
∈ H, the second inequality gives hd+1 ⩾ 0, and also that for all x ∈ P , we have

htx ⩽ hd+1. To proceed, we actually need hd+1 > 0. Rewriting the inequalities as htz > hd+1 and

ht(V,R) ⩽ |V |hd+1. If hd+1 = 0, we can consider h′ =
1

htz
h and h′d+1 =

1

2
> 0 to get h′tz = 1 > h′d+1 and

h′t(V,R) =
1

htz
ht(V,R) ⩽ 0 ⩽ h′d+1. So we have h′tx ⩽ h′d+1 for x ∈ P and h′tz > h′d+1, with h′d+1 > 0.

By considering h′′ =
1

h′d+1

h′, we see h′′tx ⩽ 1 for all x ∈ P so that h ∈ P ∗. Yet the first inequality, which

rewrites to h′′tz > 1 then contradicts z ∈ P ∗∗.

Dual property:

If F ⊆ G, then G∗ ⊆ F ∗.

Proof: If F ⊆ G, the for y ∈ G∗, we have ytx ⩽ 1 for all x ∈ G, and in particular for all x ∈ F so that
y ∈ F ∗.

We can interpret the dual as follows:

Duality of faces:

For a face ∅ ⊊ F ⊊ P , and a polyhedron such that 0 ∈ int(P ), consider the set of hyperplanes

definig that face F , in the sense F δ =

{
c :

{
ctx ⩽ 1,∀x ∈ P
ctx = 1,∀x ∈ F

}
. F δ is a face of P ∗.

Proof: Indeed, any x ∈ F defines the face F δ of P ∗ since xtc ⩽ 1,∀c ∈ P ∗ since x ∈ P and
xtc = 1,∀c ∈ F δ.
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9.4 Integer Polyhedra

Pfaffenhofer and IPintegerHull
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9.5 Polyhedral decompositions

Factoring, to tell if an LP is decoupled. "PolyhedraFacto" in folder.
An example is when we can find a change of variabes P so that we can split the dimensions in two via

Px =

(
y

z

)
, and so tha for the polyhedron Ax ⩽ b, we have AP−1

(
y

z

)
⩽ b. If we can find positive matrices

M,N ⩾ 0 such that MAP−1 =

(
C 0
0 D

)
and N

(
C 0
0 D

)
= AP−1 and Mb =

(
c

d

)
and N

(
c

d

)
, then the

polyhedron AP−1

(
y

z

)
⩽ b can be represented as the product of Cy ⩽ c and Dz ⩽ d. If we then split the

linear cost function f tP−1, we see that an LP on Ax ⩽ b can be decoupled into smaller ones.
Cartesian Factoring of Polyhedra in Linear Relation Analysis by Nicolas Halbwachs, David Merchat,
Catherine Parent-Vigouroux
Judith Beestermoeller, Decomposing Polyhedra as Cartesian Products. Maserthesis Advisor: B. Gärtner,
E. Welzl, 2021
Also paper by Henk on decomposing MIPs into Minkovski sums
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9.6 Solutions

Ex.F1: All we have to show is that they are stable under conic combinations: for normal vectors ni
corresponding to halfspaces given by ni·x ⩽ bi„ which P is contained in and for which the inequality is
strict on a face F , the conic combination yields

(∑
sini

)
·x =

∑
si(ni·x) ⩽

∑
sibi by positivity of the

scalar. So P is in the halfspace defined by the combination and on F , the previous equality is a equality,
so that the combination defines the face F . □
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10 Linear Programming

10.1 Introduction and examples

Transportation: We which to send a product from a set of factories to a set of stores for a minimum
transportation cost. If we index factories with i ∈ [n] and stores with j ∈ [m], we can let pi denote the
production capacity of factory i, sj denote the storage capacity, and cij be the cost of transporting a unit
of product from factory i to store j. We can then decribe the transportation with variables xij ∈ R to
denote the quantity of product shipped from factory i to store j (assume the product can be subdivided
indefinitly, like icecream, so that a real variable is suitable for the model). We then which to solve the

constrained minimisation problem min

∑
ij

cijxij

 st.


x ⩾ 0∑

j xij = pi∑
i xij = sj

Regression: In statsitics, the problem of polynomial regression consists in finding an (multivariable)
polynomial P (x) =

∑
∑

pi⩽d

wp·xp + w0 that estimates a real-valued parameter as a function of other pa-

rameters in Rn, given a set of observed data (xi, yi)i⩽m. The goal is to find P so that P (xi) ≈ yi for all
data points.
We can get a good P by considering margins Mi ⩾ 0 on the difference P (xi)− yi that we attempt to
minimise:

min
m∑
i=1

Mi s.t.



∑
∑

pi⩽d

wp·xpi + w0 ⩽ yi +Mi∑
∑

pi⩽d

wp·xpi + w0 ⩾ yi −Mi

Mi ⩾ 0, w ∈ Rn, w0 ∈ R

Minimax, Shapely value, transform of PL-convex to LP, max radius ball (Chebycheff center).
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10.2 Primal simplex algorithm

Standard LP:
As we’ve seen in the previous section, many problems are qualified as LPs. In order to solve them all with
the same method, we’ll reduce them to a standard form:

Definition:

An linear program (LP) in standard form is min(c· v) st.

{
Ax = b

x ⩾ 0
for some A ∈ Rm×n of full row

rank m < n.

To get from inequality constraints to the standard form, one can introduce slack variables. In the trans-
portation problem for example, these can be interprested as storage/waste of the product for factories: we

turn condition a·x ⩽ b into

{
a·x+ s = b

s ⩾ 0, s ∈ R
. To handle a·x ⩾ b, we write it as (−a)·x ⩽ (−b). To deal

with a variable x that may take negative values, we split it into x+ − x− substituting these expressions
into the constraints, the additional with x+, x− ⩾ 0.

At this stage, the constraints have form

{
Ax = b

x ⩾ 0
, but A may not have full row rank. We therefore

delete the rows of Ax = b that are linear combinations of others: if this leads to contradictions of type
0 = δ where δ ̸= 0, then there are no feasible solutions to the problem. Thus, we may replace A by it’s
rows that form a base of the space spanned by its rows, so that its rank is ⩽ n. If the rank was n, then A
is invertible and the problem has a unique solution, so that there’s nothing to optimise.

For a solution x of the initial polyhedron with value
n∑

i=1

cixi, we can construct a solution of the stan-

dard form problem by setting x+,i = max(0, xi), x−,i = −min(0, xi) and si := bi−Ai∗x, and by extending
the cost through c+,i = ci, c−,i = −ci and cs = 0, this solution has the same objective value as x. Con-
versely, for a solution to the standard form of the problem, x = x+ − x− becomes a feasible solution for
the initial problem, with same objective value. The optimisation problems are therefore equivalent.

The big idea of the simplex algorithm:
Unless the problem is infeasible or unbounded (in the sense that we can find a sequence of feasible solutions
who’s value tends to −∞), we know that by compactness, the optimal value copt is attained. The solutions
will then form a face with defining halfspace c·x ⩽ copt.
Since for most problems, we’re satisfied from getting one optimal solution, not necessarily all of them, we
can use the fact that the standard form polyhedron is pointed and that all its faces must therefore have
an vertex to focus on finding an optimal vertex of the polyhedron. In fact, the optimal face may (and does
with probability 1 for uniformly distributed costs) consist of just a vertex.

We’ve characterised the vertices of polyhedra of form

{
Ax = b

x ⩾ 0
, which are the solutions to

{
A∗BxB = b

x[n]\B = 0, x ⩾ 0

for some subset B ⊂ [n] of size |B| = m (called a basis) so that the colums (A∗j)j∈B are linearly indepen-
dent, so that xB = A−1

∗Bb, x[n]\B = 0 and x ⩾ 0.

The brute force approach to solving LPs is that of testing for all
(
n

m

)
choices of B whether this provides

a vertex, and taking note of the minimum value c·x = c·A−1
∗Bb encountered so far, so that this will be

the minimum value of the LP after having checked all possibilities. this approach has two flaws: first, it
doesn’t tell us if the LP is unbounded and second, it’s inefficient.
An alternative (and successful) approach would be to navigate the vertices along edges or rays that lead to
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cost decreases. This should shorten the vertex exploration time needed and allow us to detect rays along
which the cost infinitely decreases.
This local search approach is motivated by the fact that the objective is linear and the solution space is
convex. Indeed, if we arrive at a local minimum x for which c· (x + y) ⩽ c·x for all y ∈ B(0, ε) so that
x+y is in the polyhedron P , this will be a global minimum. Otherwise, if z ̸= x were a point of P of lower
value, since the segment [x, z] would be in the convex P , so would be the point x+

ε

2∥z − x∥
(z−x) on it,

which has value c·
(
x+

ε

2∥z − x∥
(z − x)

)
< c·x as c· z < c·x, so that we contradict the assumption that

x was a local minimum. So successive improvements until none are possible should lead us to a local and
therefore global optimum.
Here, we find another advantage of focusing on vertices. It’s usually hard to prove termination of local
search algorithms. Here however, if we move from vertex to vertex, since there are only finitely many ver-
tices, termination is easily guaranteed, as we can strictly improve in objective value only a finite number
of times.

The simplex algorithm (without degeneracy):
We start the simplex algorithm with an initial vertex x0 with basis B0. To get such an initial vertex,

we can start with a brute force approach as mentioned before, searching for feasibility through
(
[n]

m

)
.

Another method for initialising the simplex algorithm will be discussed in the next section.

We search for an improved solution of form x0 + t.y for t > 0 (we decouple direction and magnitude).

It should verify

{
A(x0 + t.y) = b

x0 + t.y ⩾ 0
and c· (x0 + t.y) ⩽ c·x0. This is equivalent to

{
Ay = 0

t.y ⩾ −x0
and

c· y ⩽ 0 (recall t > 0).
If the current solution x0 isn’t optimal, such an improvement must exist. Indeed, if there is a z with
Az = b, z ⩾ 0 and c· z < c·x0, one can take y = z − x and t = 1.
There are many improvements possible at this stage, but finding a solution the equations characterising it
we just developed is as hard as solving LPs. (If we had an efficient way of finding a point in a polyhedron
or telling that it’s empty, we could solve the LP approximately with binary search).
However, we’re looking for a specific improvement: one that will lead us to another vertex. For x0 + t.y
to be a vertex, it has to additionally have a basis B1, so that x0,i + t.yi = 0 for all i ∈ [n]\B1 and the
(A∗j)j∈B1 are linearly independent.

The simplest improvement from vertex to vertex one can make is by moving along an edge of the polyhe-
dron. An edge of the polyhedron is contained in at least n−1 hyperplanes spanning an (n−1)-dimensional
space. For our standard form polyhedron, this means that there must be at least n − m − 1 equations
of form xi ⩾ 0 that must be tight on the edge. Since the edge we seek contains x0, the coordinates for
which xi ⩾ 0 is tight must be in [n]\B0. So we must pick a j ∈ [n]\B0 so that the edge-points verify
x[n]\(B0∪j) = 0. To leave x0 for another vertex along an edge, we can therefore increase x0,j and keep
x0,[n]\(B0∪j) = 0. This leads us to choose y so that y[n]\(B0∪j) = 0 and yj = 1. To stay in the polyhedron
we have to adapt yB0 : Ay = 0 will now have form A∗B0yB0+A∗j = 0, and since B0 is a basis, this uniquely
defines yB0 = −A−1

∗B0
A∗j .

The condition t.y ⩾ −x0 is a bit more subtle. As x0 ⩾ 0 and y[n]\(B0∪j) = 0, the coordinates in [n]\(B0∪j)
add no constraints. At j, we have t ⩾ −x0,j = 0 as j was chosen in [n]\B0, so this is no constraint either.
At B0 however, we have t.y ⩾ −x0 ⇔ t.A−1

∗B0
A∗j ⩽ x0,B0 .

Here multiple things may happen. If all coordinates of A−1
∗B0

A∗j are negative, then no constraints are added,
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as t > 0 and x0 ⩾ 0. Note that in this case, we can let t→∞ and still be on the edge: this means that we

are on a ray of the polyhedron. Otherwise, a constraint is added: t ⩽ min
k∈B0,

(
A−1

∗B0
A∗j

)
k
>0

 x0,k(
A−1

∗B0
A∗j

)
k

.

In this case, we expect x1 := x0 + min
k∈B0,

(
A−1

∗B0
A∗j

)
k
>0

 x0,k(
A−1

∗B0
A∗j

)
k

 .
(
−A−1

∗B0
A∗j

)
to be a vertex: the

other endpoint of the edge. To prove that this is indeed a vertex, we use our characterisation, in the sense
that we’ll find a basis B1 for it. We have x1,[n]\(B0∪j) = 0 by construction, so B1 ⊂ (B0∪j). Now if k is the

index in which the minimum min
k∈B0,

(
A−1

∗B0
A∗j

)
k
>0

 x0,k(
A−1

∗B0
A∗j

)
k

 is attained, then at it t.
(
A−1

∗B0
A∗j

)
k
=

x0,k, or equivalently x1,k = 0. This makes all indices attaining min
k∈B0,

(
A−1

∗B0
A∗j

)
k
>0

 x0,k(
A−1

∗B0
A∗j

)
k

 candi-

dates for leaving B0, so that we could set B1 = (B0 ∪ j)\k. Is such a B1 = (B0 ∪ j)\k a basis of x1 ?
The only basis requirement that isn’t obtained by construction is that the (A∗i)i∈B1 are linearly indepen-
dent.
If we write

∑
B1

siA∗i = 0, we can get a simpler form of this expression by multiplying by A−1
∗B0

, as it

then becomes
∑
B0\j

siei = −sjA−1
∗B0

A∗j . By construction yj = 1, so that sj = 0, and then we directly get

the rest si = 0. So the (A∗i)i∈B1 are truly linearly independent, and therefore B1 is a basis of the vertex x1.

There’s a pathological case we need to discuss: the case in which min
k∈B0,

(
A−1

∗B0
A∗j

)
k
>0

 x0,k(
A−1

∗B0
A∗j

)
k

. This

doesn’t affect any of the previous reasoning’s, but it means that the basis B0 and B1 correspond to the same
vertex. This is called degeneracy, and it occurs precisely if there’s an index k with k ∈ B0,

(
A−1

∗B0
A∗j

)
k
> 0

and x0,k = 0, that is to say, that x0 was in more then n hyperplanes, aka. more then n −m inequalities
of form xi ⩾ 0 are tight.
We’ll assume that this case is never encountered in the algorithm for now, and handle this specific phe-
nomenon in a later section.

Now that we know how to move from vertex to vertex or detect rays, we’ll discuss the change in ob-
jective. We were looking for c· y < 0, which is now cj − cB0A

−1
∗B0

A∗j < 0. If we can find a j ∈ [n]\B0 for
which this is the case, then we may proceed with two cases. Either, the magnitude of the increase t is
finite so that c·x1 = c· (x0 + t.y) < c·x0 and we’ll successfully decreased the cost by moving to a different
vertex, or we can let t→∞ so that the LP is unbounded.
If however for all j ∈ [n]\B0, cj − cB0A

−1
∗B0

A∗j ⩾ 0, then we expect there to be no vertex of lower
value. If there was a better solution z, then for d = z − x0, we have c· d < 0 which we can split
into cB0 · dB0 + c[n]\B0

· d[n]\B0
< 0 for further analysis. Then we can rewrite the constraint 0 = Ad =

A∗B0dB0 + A∗[n]\B0
d[n]\B0

by multiplying by A−1
∗B0

, so that dB0 = −A−1
∗B0

A∗[n]\B0
d[n]\B0

. This yields(
cB0

(
−A−1

∗B0
A∗[n]\B0

)
+ c[n]\B0

)
· d[n]\B0

< 0 by substitution. The coordinates of the vector on the left

side of the dot-product have form j ∈ [n]\B0, cj − cB0A
−1
∗B0

A∗j ⩾ 0 while those on the right have form
z[n]\B0

− x0,[n]\B0
= z[n]\B0

⩾ 0 as B0 is a basis of x0 and z is feasible. So the dot-product should be
positive, a contradiction to the fact that z is a better solution.
So we can finally conclude that when no j ∈ [n]\B0 with cj − cB0A

−1
∗B0

A∗j < 0 exists, x0 is an optimal
vertex, and our algorithm terminates.
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Initialising the simplex algorithm:
In some cases, we can obtain a vertex and a basis from inspection of the problem. For example, for LPs

on polyhedra of the form Ax ⩽ b with b ⩾ 0, the standard form is


(A,−A, I)

x+x−
s

 = b

x+, x−, s ⩾ 0

, where full

row rank is obtained automatically from the slack variables. Then the slack variables form a basis and
the corresponding vertex is (0, 0, b), which is feasible as b ⩾ 0.

But in the general case, we must use a more general approach. It turns out that on can solve the
feasibility problem of a standard form polyhedron (is it empty ?) with an LP. The idea is that of in-

troducing error variables that we which to minimise: for

{
Ax = b

x ⩾ 0
, we introduce the error variable y

and investigate

{
Ax+ y = b

x ⩾ 0
. For a feasible point x of the standard problem, setting y = 0 produces a

feasible point to this auxiliary problem. Then, by requiring y ⩾ 0 and minimising 1· y, we’re solving an

LP on a polyhedron in standard form: min(1· y) st.

{
Ax+ y = b

x, y ⩾ 0
. By positivity of y, this minimum

positive and it is precisely 0 if the

{
Ax = b

x ⩾ 0
is feasible.

At this stage, it may seem we#re going in circles: why try initiating an LP by solving another one. The

reason is that

{
Ax+ y = b

x, y ⩾ 0
has an obvious vertex that we can always start the simplex method with.

It’s closely related to the previous trick: we first multiply rows of Ax = b by −1 in order to have b ⩾ 0, if

necessary. Then x = 0, y = b is a vertex of

{
Ax+ y = b

x, y ⩾ 0
with basis the error variables.

Once we’ve solved min(1· y) st.

{
Ax+ y = b

x, y ⩾ 0
and found a solution of value 0 with the simplex algorithm

(otherwise, the initial LP is infeasible), we have to ask if the x of this optimal solution is a vertex of the
initial problem, as the simplex algorithm requires a vertex to start. The indices for which xi > 0, the
support S, (if there are any) must be in the basis. In order to get a basis with only indices of non-error
variables, we have to add indices corresponding to xi = 0 to S, forming B, so that (A∗j)j∈B is a basis
of Rm. Since S was in the basis of the auxiliary problem, the (A∗j)j∈S were linearly independent. As A
has full rank m, we can complete the (A∗j)j∈S into a basis using more columns of A. This can be done
relatively efficiently, for example by successively adding indices to the base B, starting from S, by checking
for linear independence by solving linear systems of form A∗Bz = 0 at each iteration, so at most n times.

The simplex algorithm in tableau form:

A trick for potentially speeding up the simplex method (in special cases):
One reason why the simplex method can take a long time before terminating is that it may visit many ver-
tices of the polyhedron. For example, on the left of the figure below, we sketch the steps of the algorithm,
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in red, on a 10-gon with height (blue direction) as objective.

What if, instead of following the boundary of the polyhedron, we first moved in the best increasing direc-
tion there is, which is that of the cost c (for a maxmization problem) ? In the figure above on the rigth,
we see that only one such augmentation would have been necessary, so this seams like a reasonable idea.

We’ll assume that we’re at a point x0 of the polyhedron Ax ⩽ b, which doesn’t have to be a vertex.
If no such point is available, we can find one by solving a auxiliary problem as in phase 1 of the simplex
method, or determine infeasibility. We then find the largest t so that x0 + tc is still in the polyhedron,

which is max
i:Ai∗c>0

(
bi −Ai∗x

Ai∗c

)
. If this maximum is infinite, in the sense that for all i we have Ai∗c ⩽ 0,

then we know the LP is unbounded, as the cost increases in t∥c∥2 > 0 along the ray. Otherwise, the
corresponding point x1 is a point of the polyhedron, which now may not be a vertex, as was guaranteed
by the simplex algorithm.

Now, what do we do from x1 ? The way to recycle our idea by merging it to the simplex algorithm,
is to find a vertex close to x1 and continiue with the simplex algorithm. As the figure below shows, if we
start from a different x0, we observe that x1 need not be either optimal, nor a vertex. However, if we find
a method to find a close vertex, as we indicate in a green step to be clarified, we can continiue with the
simplex method. This initial step still has the advantage that it can conceptually speed up the algorithm.

x0

x1
x2

Now, it only makes sense to find a vertex if the polyhedron Ax ⩽ b has any. We therefore assume that the
polyhedron has 0-dimensional lineality space, which is a condition for our alogorithm to work. We then
find a vertex near x1 iteratively, as follows. At each step, an intermediate point xk will be in a face given

by

{
Ax ⩽ b

AIk∗x = b
for sets of indices I1 ⊂ I2 ⊂ .... To get the next point, starting from x1, with I1 being

the indices of tight constraints, at each iteration, we take any non-zero direction v satisfying AIk∗v = 0,

which exist until Ik has as many elements as the dimension, in which case

{
Ax ⩽ b

AIk∗x = b
describes a vertex

already, and we’ve achieved our goal. We then seek the largest t such that xk+tv is still in the polyhedron.
If xk + tv is in the polyhedron, for any t (Ai∗v ⩽ 0 for all i), then we do the same for −v. This is where
the assumption on the lineality space comes into play. Since the polyhedron is pointed by assumption, it
can’t contain an entire line, so that there must be a largest t such that xk + t(−v) is in the polyhedron.
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For efficiency, if we detect a ray in direction v at this step, we can check if ctv > 0, in which case we can
stop immediately and return that the LP is unbounded. With this choice of v, we have no guarantee that
the objective has improved at the next point. All we know is that the next point is in a face of lower

dimension, as we set Ik+1 = Ik ∪
{
argmaxi:Ai∗v>0

(
bi −Ai∗x

Ai∗v

)}
. These iterations will terminate once a

vertex is reached. This vertex will be close to x1 in the sense that they are on a common facet.

We’d like to point out that this first step fails to be useful in case the polyhedron isn’t full dimensional,
or at least that the objective c isn’t parallel to the affine hull of the polyhedron. The first step would then
yield t = 0.

As a concluding remark, we note that this trick doesn’t improve the simplex method in the worst case
scenario. Indeed, if x0 is a vertex and c is parallel to an edge at x0, then our algorithm coincides with a
step of the simplex algorithm.
Also, we need to compare the speed of pivoting in the simplex method to that for solving systems of form
AIk∗v = 0 to be able to conclude with a performance improvement.
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10.3 Anti-cycling rules

Degeneracy corresponds to the case where there are multiple basis representing a vertex, meaning that
there are more then n hyperplanes the vertex is in, each basis corresponding to an n-tuple of these hyper-
planes.

The first idea proposed to deal with this is to perturb the hyperplanes by a small amount. Indeed,
for the case of an Egyptian pyramid, if we move one of hyperplanes touching at the top "outwards" of the
pyramid, then the following happens:

We see that the vertices aren’t degenerate anymore, as they all correspond to exactly 3 hyperplanes they’re
in. The hope is that for a small enough movement, we can fix possible infeasibility wrt. the initial poly-
hedron, while keeping an almost optimal solution.

We therefore perturb the initial standard form polytope

{
Ax = b

x ⩾ 0
to

{
Ax = b+ p

x ⩾ 0
(in the form of the

initial tableau) for some small vector p to be chosen later. By the tableau form of the simplex algorithm,
we see that pivoting will cause future tableaus ta carry the perturbation only in the first column (the
b-column). For a vertex to be non degenerate, the b-column should never contain a 0 in its entries, in any
of the tableaus. A clever way to do this is by letting p = (ε, ..., εm)t where we imagine ε being small, but
treat expressions as polynomials in ε. The invariant we then want to keep from tableau to tableau is that
the b-column doesn’t contain the 0-polynomial. Since the initial tableau is (b + p,A), this is true since
bi + εi isn’t the zero polynomial.
When we pivot, we have to find the polynomials we can consider to be "positive" and find the "smallest"
among them. To be able to tell this, we let ε → 0 and compare limits. The polynomial f(ε) will be
considered positive if for i = min(j : fj ̸= 0), fi > 0 and for polynomials f(ε) and g(ε), we’ll consider
f > g if for i = min(j : fj ̸= gi), fi > gi. This will be the bridge to the regular regular simplex algorithm,
as at each pivot, we can assume ε > 0 small enough so that the pivot is the same as for the simplex
algorithm with actual numerical values.

The invariant we seek was true for the initial tableau, but is it maintained through pivoting ? This
is where the clever choice of p comes in: we’ll show that the b-column is made up of linearly independent
polynomials in each tableau. In particular, none of them can then be the 0-polynomial. This is true for the
initial tableau, as the bi+ εi are linearly independent. Pivoting affects then b-column by adding multiples
of polynomials. If the initial b-column was made up of polynomials fk(ε) and we pivot on row i, then the
next row has polynomials of form fk(ε) + skfi(ε) and sifi(ε) (where si ̸= 0) so that linear independence
is preserved (check that a linear combination that is 0 has 0 coefficients).
We can therefore apply the regular simplex method to this perturbed problem, and never obtain a degen-
erate basis. The simplex method will therefore never cycle and terminate. At termination, we let ε = 0
to recover an optimal tableau: the tableau will indeed be optimal, as the costs were never affected by the
perturbation: only the optimal value was.
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The lexicographic rule:
This first approch we gave has develloped into the notion of lexicographic rules. They are a formal way of
avoiding to dicuss the whole polynomial in ε stuff. We now present an advanced such exicographic rule.

Definition:
We say that vector v is lexicographically greater or equal then w, written v ≥L w if the first index on
which vi ̸= wi, we have vi > wi. The name come from the fact that if we associate numbers 0 to 25 to
the alphabet, a dictionary has words ordered in lexicographically increasing order. For a strict version,
we get v >L W when v1 > w1.

The lexicographic pivoting rule consists choosing, for an entering index s, the leaving index i

so that the row i is the lexicographic minimum among the normalised rows
(
(bi, Ai∗)

ais

)
i∈[m]

.

Remark: An important property the lexicographic order is that it can break ties: either v >L w, or
v <L w or v = w (as if we aren’t in the two firs cases, all entries must be equal). In particular, among
a list of different vectors, there exist unique lexicographic extrema. This implies that the minimum in
the lexicographic rule is unique, so that all other normalised rows are strictly lexicorgraphically greater.
Indeed, no two rows in a tableau can be equal, as we assume the initial tableau to have full rank, a rank
that pivots preserve and the presence of two equal rows would decrease.
This rule doesn’t affect the fact that the simplex method goes through bases of increasing cost. It only
brakes ties when pivoting.

Proposition:
Pivoting under the lexicographic rule maintains lexicographic positivity of rows.
It also causes costs (z, c) to strictly lexicographically increase, if the rows were lexicorgraphically poisitve
prior to pivoting. This means that a basis (not necessarily its associated vertex) may appear at most once
in the sequence of tableaus obtained by pivoting, as a basis determines the reduced costs.

Proof: Starting from a tableau for which rows (bi, Ai∗) >L 0 for all lines i, we start pivoting by find-

ing the unique lexicographic minimum of the
(bi, Ai∗)

ais
for which ais > 0, where s is the entering vari-

able, or conclude that the LP is unbounded. If this minimum is achieved in row i, then for the other
rows j, pivoting produces rows (bj , Aj∗)−

ajs
ais

(bi, Ai∗) for the case when ajs > 0 and j ̸= i. We can

write this as ajs
(
(bj , Aj∗)

ajs
− (bi, Ai∗)

ais

)
where we see the origin of the lexicographic rule: by having

(bj , Aj∗)

ajs
>L

(bi, Ai∗)

ais
guaranteed (and ajs > 0), we have (bj , Aj∗)−

ajs
ais

(bi, Ai∗) >L 0.

For the case ajs < 0 and j ̸= i, we can use of the fact that −ajs
ais

> 0 and both (bj , Aj∗) and (bi, Ai∗)

where assumed to be lex-positive, so that (bj , Aj∗)−
ajs
ais

(bi, Ai∗) >L 0 here as well. Finally, line i becomes

(bi, Ai∗)

ais
>L 0 as ais > 0 and (bi, Ai∗) >L 0. So lex-positivity is maintained.

The costs become (z, c)− cs
ais

(bi, Ai∗) where cs < 0 by choice of the entering variable, so that− cs
ais

(bi, Ai∗) >L 0

and therefore (z, c)− cs
ais

(bi, Ai∗) >L(z, c), so that costs do lex-increase.
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The problem at this stage is that the initial tableau of the simplex algorithm may not be lex-positive.
In our definition of lexicography, we used the natural order of indices of variables (/dimension?) to de-
termine the lexicographic order of vectors. However, we could have permuted that order of comparison,
without affecting any of the development that followed. If we then remark that the basic variables can be
ordered so that their columns for the identity matrix in any tableau, then we can take the initial tableau
permute its columns (variables) so that the first part of the tableau forms this identity matrix, putting the
b-column at the back . Then, the tableau will be lex-positive, as the first non-zero entries of the rows will
be positive. Once this is done, the previous proposition ensures that the lexicographic rule will prevent
cycling in the simplex algorithm, causing it to successfully terminate.

Bland’s/Smallest-subscript rule:
The problem with degeneracy was the we couldn’t increase t beyond 0. As we mentioned, if an iterate
xi was degenerate, then we can still define xi+1 as we did, who’s basis is the of xi, except for a leaving
variable k and a with the addition of an entering variable j. We will have xi+1 = xi, but the corresponding
bases will be different: we’ve just chosen a different subsets of hyperplanes intersecting to the same vertex.
The question is if by proceeding like this, we will eventually find a leaving variable and an entering one
such that the vertex changes.
There are only finitely many bases that can represent the same vertex. So if we keep pivoting without
changing vertex, we will have cycled through the bases at some iteration. This means that all variables
that have left the base at some iteration will have entered it at a later iteration. This suggests that if we
specify a rule on how to choose entering and leaving variables, this cycling may lead to a contradiction in
combination to the rule, guaranteeing that the rule will cause a different vertex to appear at some point.
One idea is to order the variables and see what comes from choosing leaving and entering variables wrt
that order.

Bland’s/Smallest-subscript rule:

If we choose entering and leaving variables with the smallest index, then cycles can’t occur, so
that since there are only finitely many bases (over all vertices), the simplex method will terminate if we
use this rule.

Proof: We consider the variables that have left and entered the cycle, and call them fickle. Of particular
interest is the fickle variable of largest index, say t. At the base Be where t is selected as entering variable
to get the next base, since by the pivot rule we choose the entering variable of lowest index, no other fickle
variable qualified as entering variable. If we denote by ce(j) = ctye = ctj − ctBe

A−1
∗Be

A∗j the reduced cost,
where we check for ce(j) < 0 to determine if j is a candidate for an entering variable, then the situation
described translates to ce(t) < 0 and ce(j) ⩾ 0 for all other fickle variables j.
There must also be a base Bl at which t leaves the base (in the next iteration). With our pivot rule,
this means that for all fickle variables couldn’t have been allowed to leave the bases. This translates to
xi,j > 0 for all fickle variables j such that

(
A−1

∗Be
A∗s
)
j
> 0, where i is the corresponding iteration and s is

the variable entering, as the increment is t = 0. However, all fickle variables stay at 0 in all bases, since
they are non-basic in one base of the cycle, where they take value 0, and all bases of the cycle represent
the same point. So it must be the case that for all fickle variables j other then t, we have

(
A−1

∗Be
A∗s
)
j
⩽ 0.

For a unknown motivation, we can consider the increment y direction at basis Bl. It satisfies Ay =

0 as an increment. By noticing that for cte =
∑

ce(j)e
t
j and ctl =

∑
cl(j)e

t
j , we have cte − ctl =
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((
ctBl

A−1
∗Bl
− ctBe

A−1
∗Be

)
j

)
A, giving finally the property (ce − cl)

ty = 0. We will now decompose the

dot-product and use the previous properties, together with a closer study of y, to get a contradiction on
this dot product being 0.
Recall that ys = 1, yBl

= −A−1
∗Bl
A∗s and zeor on the other coordinates. Since t was chosen to leave,

yt = −
(
A−1

∗Bl
A∗s

)
t
< 0 as to leave the index has to verify

(
A−1

∗Bl
A∗s

)
t
> 0. For the fickle j < t in Bl, we

have yj = −
(
A−1

∗Bl
A∗s

)
j
⩾ 0 by our previous paragraph.

Since t leaves Bl and was in Be, we have cl(t) < 0 and ce(t) = ct − ctBe
A−1

∗Be
A∗t = ct − ctBe

et = 0, so that
ce(t)− cl(t) < 0. Since cl(s) < 0 as s enters Bl, and s is fickle, so that ce(s) ⩾ 0, we have ce(s)− cl(s) > 0.
For the fickle j that are in Bl, ce(j) ⩾ 0 and cl(j) = 0, so that ce(j) − cl(j) ⩾ 0. Finally, for the basic j
that aren’t fickle, hence are in all bases, we have cl(j) = ce(j) = 0 and in particular ce(j)− cl(j) = 0.

Summing up:

yt < 0 ce(t)− cl(t) < 0
ys > 0 ce(s)− cl(s) > 0
yj ⩾ 0 ce(j)− cl(j) ⩾ 0 j fickle, basic, j ̸= t
yj = 0 ? j not basic, j ̸= s

? ce(j)− cl(j) = 0 j basic, not fickle

This implies that (ce − cl)ty > 0, as can be seen by spliting up the sum along coordinates and using the
signs we’ve established. This is a contradiction to (ce − cl)ty = 0. So the initial assumption that cycles
occur when we use our pivot rule is false. Hence, our pivot rule prohibits cycling.
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10.4 Duality and the dual simplex algorithm

There is a general duality theory for optimization problems that is based on Lagrange multipliers, that
we’ll develop in a later chapter. The duality theory for LPs can be motivated directly.
For an LP of form max ctx st. Ax ⩽ b, one may have the following idea: if it’s possible to write ct as
combination of the rows of A, in the sense ct =

∑
i∈[m]

siAi∗, and in addition we have done this with positive

scalars s ⩾ 0, then for any feasible point x, we have ctx =
∑
i∈[m]

siAi∗x ⩽ stb, so that stb becomes an

upper bound on the maximum value of the LP, as the latter inequality is true for any point achieving the
maximum.
We can then look for the best possible upper bound by solving min bts st. Ats = c and s ⩾ 0. This seems
a strange thing to do at first as we still have to solve an LP and we’re not sure if the minimum of this
new LP has any information on the first LP, besides providing an upper bound on its optimal value. Still,
we’ll investigate the idea further.

A first observation is that if one of he LPs is feasible, then the other either infeasible or bounded. Also, if
one is unbounded, then the other is infeasible.
For the first LP, if it’s feasible, then it’s either unbounded or it’s bounded with maximum zM . The the
latter case, ctx = zM defines the optimal face of the polyhedron, and we can use the characterisation of
faces to get the existence of a s ⩾ 0 such that Ats = c and bts = zM . This s is a feasible found of the
second LP, and it’s actually optimal, as all values of the second LP upper bound zM . So in this case, the
second LP is feasible and the two have same optimal value.

We can try to show that if the second LP is feasible and bounded, then the first is two and the opti-
mal values coincide. In that case, either both are feasible (hence the other is bounded) and their optimal
value coincide, or both are infeasible or one is and the other is unbounded.
Instead of showing the claim directly, we can use an observation we’ll develop now.

How can we get such a second LP for a standard form one min ctx st.

{
Ax = b

x ⩾ 0
?

If we transform

{
Ax = b

x ⩾ 0
to

 A
−A
−I

x ⩽

 b
−b
0

 and the objective to max−ctx, and then consider the

second LP, then it has form min
(
bt,−bt, 0

)
s st.

(
At,−At,−I

)
s = −c and s ⩾ 0. As any number can be

represented as y = y+ − y− for y+, y− ⩾ 0, the second LP is equivalent to min bty st. Aty ⩾ −c (forget
slack), which is equivalent to min btz st. Atz ⩽ c (change z = −y). We note that this last form is the
same as that of the very first LP. Hence, if we consider the "second" LP of the second LP min bts st.{
Ats = c

s ⩾ 0
, we note that we’ll have gone full circle, as we recover that max ctx st. Ax ⩽ b.

This is why the second LP associated the the first in the manners we’ve described is called the dual LP
to the first one, which we call the primal LP.

We remark that the name dual is due to the idempotence of the operation, and has nothing to do with the
duality of polyhedra, where the name was given for the same reason. For example, the dual to optimising
a linear function on a cube is not an optimisation on the cross-polytope, which is the dual of the cube: the
dimensions of the optimisation problems don’t match, yet a polyhedron and its dual have same dimension
and are in the same space.

The relation of primal and dual LP goes beyond having equal optimal values:
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Complementary slackness:

For a primal LP max ctx st. Ax ⩽ b and its dual min bts st. Ats = c and s ⩾ 0, and two feasi-
ble solutions x and s to each respectively, then both are optimal precisely when for all j ∈ [m], either
sj = 0 when (Ax− b)j = Aj∗x− bj < 0, or (Ax− b)j = Aj∗x− bj = 0 when sj > 0, or both are zero.

Proof: We can investigate the duality gap ctx− stb by introducing a term that both relate to, ctx− stb =
ctx − stAx + stAx − stb =

(
ct − stA

)
x + st(Ax − b), and we see that for feasible s and x, this gap is

precisely 0 (which is precisely what happens when the solutions are optimal) when for all j ∈ [m], either
sj = 0 when (Ax− b)j = Aj∗x− bj < 0, or (Ax− b)j = Aj∗x− bj = 0 when sj > 0, or both are zero.

Complementary slackness provides a was of finding a dual optimal solution, if a non-degenerate primal one
is known. If x∗ is a non-degenerate solution to max ctx st. Ax ⩽ b, in the sense that the tight inequalities
of Ax∗ ⩽ b are correspond precisely to a set linearly independent rows of A indexed by I, that form a base
of the space of x∗, then x∗ = A−1

I∗ bI . Complementary slackness then tells us that for the minimum dual
solution s∗, we have s∗j = 0 for j /∈ I. Then dual feasibility simplifies to c = Ats∗ ⇔ c = (AI∗)

ts∗I , which
has the unique solution s∗I =

(
A−1

I∗
)t
c. So we can get the dual solution by simply solving a linear system.

This isn’t the case for a degenerate optimum.

Conversely, if we have a non-degenerate optimal solution to min bts for c = Ats and s ⩾ 0, provided
by the simplex method, so that there is I for which s∗j = 0 for j /∈ I and s∗I =

(
A−1

I∗
)t
c and s∗j > 0 for

j ∈ I (non-degeneracy). Then complementary slackness tells us that x∗ = A−1
I∗ bI is precisely the optimal

soution to the dual.

We can note the following. Given an index set I for which the rows of A index by I for a base of
Rn, then if x = A−1

I∗ bI satisfies A[m]\I∗x ⩽ b[m]\I , then this point is a feasible solution to the LP on
Ax ⩽ b, and if sI =

(
A−1

I∗
)t
c satisfies sI ⩾ 0, then we can complete it to a feasible solution of the LP on

Ats = c, s ⩾ 0, by setting sj = 0 for j /∈ I. If we can do both, then ctx = stIAI∗A
−1
I∗ bI = stb, so that

weak duality ensures that they are actually optimal for their respective LP.

COMPLETE WITH THE TABLEAU STUFF
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10.5 Sensitivity analysis and post-optimization

We start withe the sensitivity analysis.
TO COMPLETE: "ContinuityLinProg" in folder, "A charcterisation of stability for linear programming"
by Robinson. And chapter by Bertsimas, parts on global dependece.

We now turn to post-optimization.
Variation of the right term:
We ask how to "fix" our solution if max ctx st. Ax ⩽ b is pertubed to max ctx st. Ax ⩽ b′ or if min ctx

st.

{
Ax = b

x ⩾ 0
is perturbed to min ctx st.

{
Ax = b′

x ⩾ 0
. We assume that the solutions of the unperturbed

problems are non-degenerate.
In the first case, recall that the associated dual solution s∗ to an optimal x∗, which can be found by solving
a linear system, remains a basic feasible solution to the dual LP (with basis the indices of tght inequalities

at the primal optimum), which has constraints

{
Ats = c

s ⩾ 0
, but now has objective value b′ts, which may

not be optimal anymore. We can the perform the simplex method on the dual with s∗ as initial point,
sparing us the phase 1 of the simplex method of the perturbed primal.
In the second case, we do the same, with duality as well.

Variation of the cost:

If the costs of min ctx st.

{
Ax = b

x ⩾ 0
is perturbed to min c′tx st.

{
Ax = b

x ⩾ 0
, then an optimal solution

to the first problem remains feasible, but may not be optimal anymore. We can check this by considering
the new reduced costs, c′j − c′B∗A−1

∗B∗A∗j , where B∗ was a basis of an optimal solution to the unperturbed
problem. We can then persue the simplex algorithm, with these new costs.

Adding a new variable:

ssume a new variable has to be considered, so that min ctx st.

{
Ax = b

x ⩾ 0
becomes min ctx + cNxN st.{

Ax+ xNa = b

x, xN ⩾ 0
. We have feasible solution (x, xN ) = (x∗, 0), where x∗ was an optimal solution to the

previous problem, with same basis B∗. It may however not be optimal anymore: the reduced cost at N is
now cN − cB∗A−1

∗B∗a. Note that cB∗A−1
∗B∗ corresponds to the optimal dual solution, in the non-degenerate

case, so that the reduced cost can be computed easily. We may have to keep runing the simplex algorithm
if this cost is negative.

TO FINISH
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10.6 Klee-Minty cube

"How good is the simplex algorithm" klee minty
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10.7 Large-scale and decomposition methods

Delayed column generation method:
We consider the cutting stock problem, in which we’re given steal bars of length L, and a set of m lengths
li at which steal bars are usually sold. To cut the large rods into smaller ones, we use paterns a1, ..., am
where ai is the number of rods of length li we cut from one big rod. So we require that

∑
i∈[m]

aili ⩽ L. We

assume that we have demands bi ⩾ 0 for bars of legth li that we have to meet by cutting the rod of length
L. The goal is to minimise the number of big rods we need, to meet the demand. To model this, we can in-
troduce variables x(a1,...,am) which are the numbers of rods of length L to be cut according to valid pattern

a1, ..., am. We then try to solve the LP min 1tx st.

{∑
(a1,...,am) aix(a1,...,am) = bi

x ⩾ 0
(this should be an IP,

but rounding the LP relaxation upwards is good enough for industrial purposes). The problem here is that
the variables and sums range over a set that must first be computed (we sum over the integer a1, ..., am
for which

∑
i∈[m]

aili ⩽ L) and that may have exponential size. We’ll now describe a method for handling this.

We can find an initial basic feasible solution by setting xetj = bi for j ∈ [m] and x(a1,...,am) = 0 oth-
erwise, with basis

(
etj
)
j∈[m]

(remember the indices are vectors of integers). In the simplex algorithm,
at a given basis B, we decide which way to go by looking at the residual costs, which have form
1t(a1,...,am) − 1BA

−1
∗BA∗(a1,...,am). If it’s positive for all patterns, then the current solution is optimal, oth-

erwise we can find a pattern for which this isn’t the case and have it enter the basis. To determine this,
we can solve min

(
1t(a1,...,am) − 1tBA

−1
∗BA∗(a1,...,am)

)
over integer a1, ..., am for which

∑
i∈[m]

aili ⩽ L: if the

minimum is positive, the basis is optimal, otherwise the pattern minimising it is a candidate for entering
the basis as an index. The wonderful twist in difficulty is that the latter problem is equivalent to max-
imising 1tBA

−1
∗BA∗(a1,...,am) = 1tBA

−1
∗B(a1, ..., am)t over these constraints: this is the knapsack problem, and

it can be solved more efficiently with dynamic programming methods, or even rapidly approximately with
approximation algorithms. This means that we can move from basis to basis and check optimality fairly
rapidly. This particular adaptation of the revisited simplex method allows us to solve a large problem
without a large number of computations at each iteration.

Generally, we refer to a delayed column generation method as describing a revisited simplex method
in which the check for optimality and can be done more efficiently then by checking all the reduced costs
individually, usually with a subroutine such as knapsack in our case.

Delayed constraint generation or cutting plane method:
This in a sense the dual version of column generation. It applies to problems of form max ctx st. Ax ⩽ b,
where the number of contraints is exponentially large, but where we know that the problem is bounded.
It works by starting on a bounded problem max ctx st. AI∗x ⩽ bI for a small index set I. At each step,
we solve this problem, finding an optimal vertex x∗ (due to boundedness). The question is if this x∗ is
feasible for all constraints, which requires us to check Ax∗ ⩽ b, which we can do by solving min

i
(bi −Ai∗x

∗)

and checking if its positive. If it is, then x∗ is feasible and since any feasible x for the main problem on
Ax ⩽ b is feasible on AI∗x ⩽ bI , so in particular the optimum of the main problem x∗∗, then ctx∗∗ ⩽ ctx∗

from the small problem, so that x∗ is feasible optimal for the main problem. Oherwise, we get an index
i /∈ I with bi − Ai∗x

∗ < 0. We then reiterate our procedure with the new index set I ∪ i: however, we
can recycle x∗ by noticing that all we have to do is a post-optimization step, as only one new constraint
Ai∗x ⩽ bi has been added, to get the next optimum x∗, which is attained as since max ctx st. AI∗x ⩽ bI
is bounded, so must the problem for I := I ∪ i be. Note that we may discover infeasibility along the way.
Note also that bi = Ai∗x separates x∗ from the solution space, hence the name cutting plane method.
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The point is that, just like for reduced costs in column generation, the routine problem min
i

(bi −Ai∗x
∗)

may be solved more efficiently then by computing all differences, depending on the structure of the problem.

Dantzig-Wolfe decomposition:
Dantzig-Wolfe decomposition uses the representation of polyhedra in a particular context.

Suppose we want to solve a problem of form min ct
(
x

y

)
st.


Ax+By = a

Cx = b

Dy = d

x, y ⩾ 0

. By letting P be the poly-

hedron defined by

{
Cx = b

x ⩾ 0
and Q the one defined by

{
Dy = d

y ⩾ 0
, we can reformulate the solution

space as


Ax+By = a

x ∈ P
y ∈ Q

.

By writing the polyhedra in V-representation, we get


AV1λ1 +AR1µ1 +BV2λ2 +BR2µ2 = a

λ1, µ1 ⩾ 0, 1tλ1 = 1

λ2, µ2 ⩾ 0, 1tλ2 = 1

. We’ll

never have to actually compute this representation, but we need to consider it for theoretical purposes.
If we want to solve the problem in V-representation, we can use the revisited simplex method. The problem
here is that the residual costs to compute may be exponential in number (as many as vertices and extreme

rays). For example, for a basis B, the residual cost of variable λ1,j is ctV1,j − ctBM−1
B

AV1,j1
0

, where

M denotes the matrix representation of the LP in V-representation, and the last two lines of

AV1,j1
0


correspond to the contraints 1tλ1 = 1 and 1tλ2 = 1 respectively. Note that ctV1,j − ctBM−1

B

AV1,j1
0

 =(
ct − ctBM−1

B

)
AV1,j + r for some rest expression r depending only on B. For rays, the residual cost of

variable µ1,j is ctR1,j − ctBM−1
B

AR1,j

0
0

 =
(
ct − ctBM−1

B

)
AR1,j .

We can now see how to use column generation techniques in this context. By solving min
((
ct − ctBM−1

B

)
A
)
x

of x ∈ P with the simplex method, we either get a vertex V1,j or a ray R1,j as solution, with either ob-
jective value ⩾ −r, or < −r, or the knowledge that the problem is unbounded unbounded. In the first
case, we know that none of the residual costs of the x-part of the main problem in V-representation can
be negative, so the current solution is optimal if this is the case for Q as well. In the second case, the
solution to this auxiliary LP provides a V1,j who’s corresponding variable may enter the basis, and in the
third it provides a R1,j who’s corresponding variable may enter the basis.
Hence, this describes a column generation technique that uses LPs as subroutines to determine if reduced
costs imply optimality.

The last problem is the following: with the revisited simplex method and the fect that we compute
V1,j or R1,j at each iteration implies that we never have to compute the entire V-representation of P or
Q. However, we need an initial basic feasible solution to the main problem in V-representation.
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To do this efficiently, we start by finding vertices vP = V1,i and vQ = V2,j of P and Q (which are standard
hence pointed) with phase 1 of the simplex method (or determine infeasibility). Next, we solve a sort of
phase 1 for the decomposition method. We may assume that Avp +BvQ ⩽ a, (or multiply this constraint
by −1 to get the same initial LP and this inequality).

We solve min 1tz st.


AV1λ1 +AR1µ1 +BV2λ2 +BR2µ2 + z = a

λ1, µ1 ⩾ 0, 1tλ1 = 1

λ2, µ2 ⩾ 0, 1tλ2 = 1

z ⩾ 0

, which has objective value 0 pre-

cisely if the main LP is feasible, and who’s optimal basic solution will be a basic feasible solution to the
main LP in V-representation, in this case. This problem seems to require knowing the V-representation of
the polyhedra. The twist is that we can use the previously described method to solve this problem, as we
can get a basic feasible solution for it formulaically. Indeed, we have a basis in the indices (1, i), (2, j) and
the coordinates corresponding to z, with basic feasible solution λ1,i = 1, λ2,j = 1, z = a−AV1,i−BV2,j ⩾ 0
and all other coordinates 0.

Benders decomposition:
Just like for contraint generation is in a sense the dual to column generation, Benders decomposition is
the dual to Dantzig-Wolfe decomposition. It applies to problems such as the following one, which arrise

for example in stochastic programming: min

ctx+
∑
i∈[k]

f ti yi

 st.


Ax = b

Bix+ Cyi = di, ∀i ∈ [k]

x, y1, ..., yk ⩾ 0

.

The idea is that for fixed feasible x, we have to solve min f ti yi st.

{
Cyi = (di −Bix)

yi ⩾ 0
for all i to

get the best possible objective value for the main problem, which is then decoupled. Equivalently, we can
solve the dual max

(
(di −Bix)

tz
)

st. Ctz ⩽ fi.
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10.8 Simplex specification: the network simplex method

Some optimization problems that have a combinatorial flavour can be phrased as LPs and solved by the
simplex method. In such cases, we can interpret the notions from the simplex method in a combinatorial
context. This can lead us to replace simplex steps by equivalent ones that use the combinatorial context,
and that are faster or use less memory then the brute simplex. We can also hope to get a bound on
the runtime of the simplex method from the combinatorial context. We give the example of the network
simplex method.

The problem:
We consider a network flow problem in which we’re given a digraph G, edge costs c and net production b of
a resource at each vertex, so bv > 0 if vertex v produces more then it consumes and bv < 0 otherwise. The
goal is to ship the resource in quantity fe ⩾ 0 along edge e so that the net demands are met and no resource
is stored: so for all v, we have bv +

∑
e∈δ−(v)

fe =
∑

e∈δ+(v)

fe. We assume that the graph is undericted when

orientation and parallel edges are ignored, for in the oppsite case, we solve the problem on the connected
components. A necessary condition for such a flow f to exits is that "rien ne se perd, rien ne se crée, tout
ce transforme",

∑
v∈V

bv = 0, as can be seen by summing the contraints bv +
∑

e∈δ−(v)

fe =
∑

e∈δ+(v)

fe over se

vertices and noting that each edge has a head and a tail. Note however that it may not be sufficient, for
example in a one-edge-digraph of edge (a, b) where ba = −1 and bb = 1. We want to do this at a minimum
cost, given by ctf , where ce is the cost per unit resource transferred along e.

If A denotes the vertex-arc incidence matrix, so that ave =


1 : e ∈ δ+(v)
−1 : e ∈ δ−(v)
0 : else

, then we can rephrase the

problem as the LP min ctf st. Af = b, with f ⩾ 0.

The network simplex method:
We almost have a standard formulation of the problem. However A doesn’t have full rank: when we sum
its rows, we get the zero vector as each row contains exactly two non-zero entries 1 and −1. We can
therefore ignore the last row, corresponding to the last vertex r in some ordering, as we can dedue it
from the others. Then, A (useing the same notation) will have full rank. Indeed, assume otherwise for
contradiction. Then there is λ ̸= 0 with λtA = 0. By considering a λv ̸= 0 and an edge e incident to v
(recall that G is connected), the condition on column e of λtA = 0 implies that the other endpoint of e
must have same coefficient in λ. By conectedness, the is a path (possibly along reverse oriented edges)
from v to r. By applying the argument, we see that the λ coefficients along the vertices of the path must
be the same. At the last edge of the path (w, r), the colum of A has a single non-zero entry, since we
deleted the last row corresponding to r. Therefore, at that column, λtA = 0 implies that λv = λw = 0,
contradicting λv ̸= 0.

We’ll now investigate what a basis from the simplex method corresponds to in this context. We seek
|V | − 1 columns, corresponding to edges, that are linearly independent. It’s actually easier to find edges
that correspond to dependent columns. For a cycle C, in the undirected sense, we chose an orientation on it
and add the columns corresponding to edges that conform to the orientation and subtract those that don’t.
Observing the coordinates of that sum, we see that for each vertex only two non-zero terms appear, which
are 1 and −1 for all orientations and summation signs. Thus, we’ve produced a non-zero combination of
columns that is zero. Therefore, we should search among edge sets that don’t contain cycles, aka. forests,
as otherwise we could use the combination on the cycle to get a zero combination. Now the only forests
that have |V | − 1 edges are trees, so that only trees could correspond to basic solutions of the simplex
method. In fact, any of them does: if there were a linear combination of columns corresponding to a tree
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that is zero, we could observe the coordinate of a leaf of a tree that isn’t r (there are at least two leaves
in any tree). Since it has a single non-zero entry in the combination, the corresponding coefficient must
be zero. If we repeat this argument further and further on the edges with supposed non-zero coefficients,
which are trees since deleting leaves from trees maintains the tree property, we see that the combination
is the zeor combination, so that the edge corresponding to the tree are linearly independent.

Hence, a basic feasible solution of the LP corresponds to a tree T , where fe = 0 for e /∈ T and fe ⩾ 0 for
e ∈ T . Note that for a given tree, it is easy to compute the corresponding flow and therefore check feasi-
bility of the basic solution. Indeed, we start at a leaf l connected to the tree by (l, w), where by fe = 0 for
e /∈ T and bv+

∑
e∈δ−(v)

fe =
∑

e∈δ+(v)

fe it must hold fwl = bl. If we then ignore this leaf, deleting it mentally,

we’re faced with the same problem on a smaller tree with the same b, except for the new bw := bw ± bl, to
account for fwl = bl in the balance constraint bv +

∑
e∈δ−(v)

fe =
∑

e∈δ+(v)

fe. We can therefore proceed leaf

by leaf in this way to recover the flows. We check feasibility along the way with fe ⩾ 0.

To start the simplex algorithm, we need an initial feasible tree. We can do this with a phase 1 that
has a particular form in this combinatorial context. We use the network simplex algorithm on an auxiliary
graph that is constructed as follows: we add a vertex s, that is connected to each vertex v with bv ⩾ 0 by
(v, s) and to each vertex v with bv < 0 by (s, v). Then the edges incident to s form a tree, and this tree
is feasible since the flow fe = |bv| is feasible for it, where bs = 0. On this auxiliary network, we minimise
ctf where ce = χδ(s), so that basic feasible solution of objective value 0 corresponds to a feasible tree that
uses no edges incident to the artificial s, hence is also a feasible tree in the original network.

Now, how do we improve the objective ? What do pivots and reduced costs look like ?
If we let variable e enter the base, then e /∈ T closes a unique cycle C in the tree. Increasing fe = 0 by t
while keeping the other non-tree-edge-flows zero requires adjusting the flows on the tree. It turns out that
only changing flows on the cycle is necessary and sufficient. If we changed flow on a non-cycle variable,
then we can consider a leaf among the edges who’s flow gets adjusted in the connected component of that
edge, when the cycle is deleted. The edge of this leaf can’t have its flow adjusted. So only adjustments
on the cycle C are possible.
We orient C in the direction of e. Increasing fe = 0 by t ⩾ 0 while changing flows only on the cycle is done
as follows: for edges a ∈ C conforming to the orientation, we add t of flow, and for a ∈ C not conforming
to the orientation, we decrease t of flow. To maintain feasibility, flows have to be positive, so that the most
we can increase is t = min

a∈B
(fa) where B is the set of edges of C not conforming to the orientation. The

edge that achieves this minimum will be the leaving variable. If all edges on C conform to its orientation
along e, so that C is a dicycle, then we can increase t indefinitely.

The reduced costs for basis B have form ct = ct − ptA for the dual variable pt = ctBA
−1
∗B. Computing

ptA, we see that c(u,v) =


c(u,v) − (pu − pv) : u, v ̸= r

c(u,v) − pu : v = r

c(u,v) + pv : u = r

, or c(u,v) = c(u,v)− (pu− pu) with the convention

pr = 0. Now, since the reduced cost are zeor on the basis, we get c(u,v) = pu − pv for (u, v) ∈ T where T
is the tree corresponding to basis B.
This actually allows us to compute p, and therefore also the reduced cost of edges not in the basis/tree.
Indeed, we have pr = 0 and for any undirected path from r to any other vertex v, we can use the relations
c(u,v)+pv = pu or pv = pu−c(u,v) to compute the p-value at the next vertex on the path staring from r, until
we reach v and get pv. We can therefore compute these "potentials" p along the tree in a BFS type man-
ner, knowing only the current basis/tree T , and compute the reduced costs of other edges via ct = ct−ptA.
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So a step in the network simplex algorithm starts by finding potentials p associated to the tree solu-
tion T with a BFS-type algorithm, from which we get reduced costs of edges not in the tree, which tells
us which edge to augment along, which we do by finding an edge on the closed cycle that has reverse
orientation and who’s flow is smallest, decreasing the flow on that edge and increasing it on the entering
edge. On last trick for a clever implementation is that we don’t have to compute potentials from scratch
all the time. If T is the tree at a step, and edge e leaves and edge a enters, then the potentials of the
connected component of T\e that contains the root r doesn’t change, as we’d recompute them in the same
way we did before. We therefore only need to compute the potentials of the other connected component
of T\e, which we can do also a tiny bit more efficiently: a was endpoints in both components, so that
we know the potential of on endpoint, from which we deduce that of the other. We the treat the second
endpoint as a root of the component of T\e that doesn’t contain r, which is a tree, and use the same
procedure to compute potentials on it.

We note that in the case that the cycle we pivot on is a directed one, then for the entering edge (u, v) we
have c(u,v) − (pu − pv) < 0, and by summing the costs on the rest on the cycle, which are in the tree so
that c(u,v) = pu − pv, we see that the potentials vanish, as they appear each twise with opposite sign, so
that

∑
e∈C

ce < 0. We have thus detected a negative cost dicycle.

We close this section by discussing the running time of the network simplex method. By using anti-
cycling rules, we can ensure that we never see the same trees twice as bases. We know that the number
of trees is less then that in a complete graph on |V | vertices, so that we get a bound on the number of
iterations of |V ||V |−2. We can get other bounds by closer inspection of the number of spanning trees:
with the matrix-tree theorem and the Hadamar inequality, we can bound the number of iterations by(√

4(|V | − 2) + ∆2
)|V |

, where ∆ is the maximum degree in the graph when undirected. We mention that
exponential runtime examples can indeed be constructed, like the Minty-Klee cube.

160



10.9 Solutions
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11 Integer linear Programming

11.1 Introduction and examples

Definition:
An integer programm (IP) is an optimisation problem of the form

min(c·x) st.

{
Ax ⩽ b

x ∈ Zn

A mixed integer programm (MIP) is an optimisation problem of the form

min

(
c·
(
x

y

))
st.

{
A
(
x
y

)
⩽ b

x ∈ Zn, y ∈ Rk

We give examples of IPs with a combinatorial flavour.

The knapsack problem:
A robber breaks into your house with a bag (knapsack) of volume capacity W . The robber knows the
volume wi and the value vi of your items i ∈ [m]. The robber wants to maximise the total value of objects
to steal, subject to the constraint that the total volume of the objects to steal doesn’t exceed the volume
of the bag he’ll carry them with.
We can model this as an IP by defining indicator variables xi for the items so that xi = 1 represents the
robber stealing item i and xi = 0 represents him leaving it. Then, the objective function is

∑
i∈[m] vixi,

the volume constraints are
∑

i∈[m]wixi ≤W , and the final constraints are 0 ≤ xi ≤ 1 and x ∈ Zn.

Ex.Sudoku: Show how to solve a Sudoku with an integer program.

The bin packing problem:
We’re moving to Berlin and are faced with the following problem. We have to pack our things into bags
of unit volume and try to use as little bags that we’ll have to carry up and down stairs.
If the item i[n] has volume ai ⩽ 1, we know that we’ll have to use at most n bins bj . We can use bj as an
indicator variable that tells us if we use bin j. We also use indicator variables xij to represent putting item
i in bin j. Then our goal is to minimise

∑
j∈[n]

bj subject to
∑
i∈[n]

aixij ⩽ bj for all bins bj and
∑
j∈[n]

xij = 1,

with xij , bj ∈ {0, 1}.

The (uncapacitated) facility location problem:
We’re given a set of n sites at which we may open a store, the costs fj of opening the store at location j,
as well as data pij of the profit brought by one of m consumers i if the store is opened at j (if the store is
closer to the consumer, the consumer might visit more often). If we use indicator/characteristic vectors,
we encode by xj = 1 that we open a store at location j, and by yij = 1 that consumer i shops at the store
located in j. Consumers only go to one store of the chain, so

∑
j∈[n]

yij = 1. We encode that fact that a

store has to be open for consumers to shop in it by
∑
i∈[m]

yij ⩽ xj . Finally, subject to these constraints

(and x, y ∈ {0, 1}n, {0, 1}m), we which to maximise profits
∑
ij

pijyij −
∑
j

fjxj .
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Why study combinatorial problems as IPs ?
To answer this question, we’ll give an illustrative example. We’ll formulate the MST problem as a
combinatorial one. Remember that trees are the graphs that have |V | − 1 edges and no cycles. If we
let xe indicate the use of edge e, then the contraint

∑
e∈E xe = |V | − 1 models the first condition,

and since
∑

e∈E(U) xe ⩽ |U | − 1 prohibits the existence of a cycle on vertex set U ⊆ V , the system
∑

e∈E xe = |V | − 1∑
e∈E(U) xe ⩽ |U | − 1,∀U ⊆ V, |U | > 2

x ∈ {0, 1}E
indicates a tree of a graph. Finiding a MST then becomes

solving the IP min
∑
e∈E

cexe on this solution set.

This may seem unnecessarily complicated when compared to the simple greedy algorithm solving the
MST problem. However, it has the advantage that we didn’t need to investigate the problem from a
combinarorial persepective.
If we consider the problem of finding a spanning tree who’s number of leaves is maximum in a connected
graph and we attempt to find a combinatorial and efficient approach, we run into trouble. Indeed, it turns
out that this problem is NP-complete, so it’s likely that this problem has ne efficient algorithm to solve it.
Additionally, it seems hard to extract anything from the MST problem that could help for this problem,
when considering the combinatorial aspect.

On the oher hand, the IP version can be modified quite easily to solve the problem. Indeed, if lv is
to indicate wether vertex v is a leaf, then lv ⩽ 1

|δ(v)|−1

(
|δ(v)| −

∑
e∈δ(v) xe

)
prohibits it from taking value

1 unless v is a leaf. If we solve max
∑
v∈V

lv for



∑
e∈E xe = |V | − 1∑
e∈E(U) xe ⩽ |U | − 1, ∀U ⊆ V, |U | > 2

lv ⩽ 1
|δ(v)|−1

(
|δ(v)| −

∑
e∈δ(v) xe

)
,∀v ∈ V, |δ(v)| ⩾ 2

x ∈ {0, 1}E , l ∈ {0, 1}V
then for the optimal solution, lv will be precisely 1 if v is a leaf (otherwise we could get a larger objective
by increasing it), so that the optimal value is the maximum number of leaves of a spanning tree.

The moral of the story is that finding IP formulations is easier then finding combinatorial algorithms.
Of course, combinatorial algorithms for a specific problem can be (and often are) much more efficient then
the general methods used to solve IPs. But, as the saying goes: "first do, then do efficiently".
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11.2 LP relaxation and total unimodularity

We could try to adapt the simplex algorithm to solve (M)IP problems, but such an adaptation fails. We’ll
see that solving IPs can be achieved by solving LPs on specific polyhedra. The problem is that determining
the H-description of such polyhedra can’t be done efficiently, so the best we can get from the previous
chapters will be a relaxation of the IP.

Definition:
The integer hull of a polyhedron P is the convex hull of its integer points PI = conv (P ∩ Zn).
The LP relaxation of of an IP is the LP:

min(c·x) st.

{
Ax ⩽ b

x ∈ Rn

Ex.CHH: Show that the integer hull of the half space {x : a·x ⩽ b} for a ∈ Zn is
{
x :

(
1

g
a

)
·x ⩽

⌊
b

g

⌋}
,

where g = gcd(ai). What’s the relation between the integer hull PI of a polyhedron in H-description
P = ∩iH+

i and the polyhedron ∩i(H+
i )I , which we now know how to describe for rational entries ?

Proposition: Equivalence of an IP with the integer hull LP
Solving an IP with polyhedron P can be done by solving the LP on PI .

Proof: The constraints Ax ⩽ b and x ∈ Zn are infeasable (P has no integer points) precisely when PI

is empty, so both programms are infeasible simultaneously. Note that PI contains all points verfifying{
Ax ⩽ b

x ∈ Zn
, so that min

PI

(c·x) ⩽ min
P,x∈Zn

(c·x). In the unbounded cases, equality holds, so we’re left with

the case in which min
PI

(c·x) is finite and attained in xo and our goal is to prove that min
PI

(c·x) is attained

in an integer point xio as well, so that min
PI

(c·x) = c·xio ⩾ min
P,x∈Zn

(c·x) and xio solves the IP.

By the definition of PI , we have the convex combination xo =
∑

sixi with xi ∈ Zn. If one of these xi
had suboptimal value, c·xj < min

PI

(c·x), then scaling and summing with c·xi ⩽ min
PI

(c·x) would yield the

contradiction c·xo < min
PI

(c·x). So there is in particular at last one xj := xio such that c·xj = min
PI

(c·x),
which we were looking for.

Proposition: LP relaxation
For an IP with polyhedron P , the LP relaxation gives a lower bound on the optimal value:

min
P

(c·x) ⩽ min
PI

(c·x)

Proof: This is because PI ⊂ P , which is due to P being convex and PI being the convex hull of points in
P . So all values of c·x on PI are greater then minP (c·x).

Remark: The LP relaxation can yield terrible bounds. For example consider the polygon between the
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lines y =
x

k
and y = 1 − x

k
given by


x ⩾ 0

ky ⩾ x

ky ⩽ k − x
for a parameter k ∈ N. It’s only integer points are

(0, 0) and (0, 1), as for integer points with x ⩾ 1, k − x ⩾ ky ⩾ x forces y ⩾ 1 and contradicts x ⩾ 0. For

objective function c = (−1, 0), the LP relaxation yields minimum c·
(
k

2
,
1

2

)
= −k

2
while the only feasible

values for the two integer points are 0. So the distance of the relaxation bound to the IP value can be
arbitrarily large.

On the other hand, in some cases, the LP relaxation solves the IP.
We’ll soon give precise and more computational criteria for P so that this happens.

Definition:
A polyhedron P is an integer polyhedron if P = PI , aka. P is the hull of its integer points.

Proposition: LP relaxation for integer polyhedra
If P is an integer polyhedron, then the LP relaxation solves the LP.

Proof: this is due to to the equivalence of an IP with the integer hull LP for the case that P = PI .

Ex.RelaxEx: Show that the converse doesn’t hold by giving an example of an IP on a non-integer poly-
hedron, who’s LP relaxation solves the IP.

Remark: An interesting fact is that the solution space of an IP can be represented in different ways. By

that, we mean that

{
x :

{
Ax ⩽ b

x ∈ Zn

}
=

{
x :

{
A′x ⩽ b′

x ∈ Zn

}
for different matrices A and vectors b. For

example, the integer points of the cube [0, 1]2 are also those of [0, 1.2]× [−0.5, 1.3].
This observation raises the question of the difference between the relaxations for these different formula-
tions. For the example of the cube, the first formulation is an integer polyhedron, so that the LP solves
the IP, whereas the second doesn’t. The next paragraph is a nontrivial example of this phenomenon.

Recall the knapsack problem from the previous section. From its definition, we can consider the relaxation
with polyhedron P =

{
x ∈ [0, 1]3 :

∑
wixi ⩽W

}
.

We now derive a different formulation of the knapsack problem.
We call a set of items C a minimal cover for the problem if breakes the weight constraint,

∑
i∈C

wi > W ,

but removing any item restores it, ∀j ∈ C,
∑
i∈C\j

wi ⩽W . They are the inclusion minimal infeasible sets of

items. Any feasible set of items for the knapsack instance (caracterised by x) can’t contain all the items
of a minimal cover (for wi ≥ 0), so

∑
i∈C

xi ⩽ |C| − 1, for otherwise, the total volume of that item set is

at least
∑
i∈C

wi > W . The intersting thing is that the converse holds, if a set of items (caracterised by x)

verifies
∑
i∈C

xi ⩽ |C| − 1 for all minimal covers C, then it is feasible for the knapsack problem.
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Ex.Knap1: Prove the last claim.

From this new formulation, we get a new underlying polytope: Q =

{
x ∈ [0, 1]3 :

∑
i∈C

xi ⩽ |C| − 1, ∀C ∈ K

}
where K is the set of minimal covers of the knapsack instance. As we just saw above, P and Q have the
same integer points, so PI = QI .
The interesting fact is that depending of the knapsack instance, it’s possible that P ⊊ Q or Q ⊊ P , so
that min

P
(c·x) ⩾ min

Q
(c·x) or min

P
(c·x) ⩽ min

Q
(c·x), so that one LP relaxation may yield a beter bound

then the other.

For example, for 3 items of volume 2 and a bag of volume 3, P = {x, y, z ∈ [0, 1] : 2x + 2y + 2z ⩽ 3}.
The minimal covers are all subsets of items of size 2, since all items are feasible and deleting any item
from the set of all 3 of them yields 2 items, which have volume 4>3, so Q = {x, y, z ∈ [0, 1] : x + y ⩽
1, x+ z ⩽ 1, y + z ⩽ 1}. If we add up all inequalities from Q, we get the one defining P , so that Q ⊂ P .

But
(
1,

1

2
, 0

)
∈ P\Q, so the inclusion is strcit, and Q yields a better relaxation.

Now, for 3 items of volume 1 and a bag of volume 1, P = {x, y, z ∈ [0, 1] : x + y + z ⩽ 1}. The minimal
covers are the same as before, for the same reasons, so Q = {x, y, z ∈ [0, 1] : x+y ⩽ 1, x+z ⩽ 1, y+z ⩽ 1}.
Now however, the inequality defining P implies those defining Q, since the variables are positive, so P ⊂ Q.

This time,
(
1

2
,
1

2
,
1

2

)
∈ Q\P , so P is the better relaxation.

A more systematic study of how to obtain good relaxations with better formulations will be the object of
the chapter on cutting planes.

Total unimodularity:
We now look for a computational criterion that allows us to tell if a polyhedron given by its H-presentation
is has integer vertices, in which case it’s LP relaxation solves the IP version. This is because the LP is in
one of three cases, in all of which we can draw conclusions on the IP:

• If the LP is infeasible, then so is the IP, as the IP has the same constraints but with additional
integrality

• If the LP is unbounded, then the underlying polyhedron must contain a ray in rec(P ). If A ∈ Qm×n

and b ∈ Qm, then the ray has to be rational as well, REFERENCE RATIONAL POLYHEDRA. So
by scaling it by a common multiple of its entries denominators, we get a integer vector in the ray. So
finally, the IP is either infeasible (for example for P = [1/3, 2/3] × R = {(x, y) : 1/3 ⩽ x ⩽ 2/3}),
or it has a feasible point and must contain all integer multiples of the ray spanned by the integer
vector we found in rec(P ). This sequence of points will be unbounded for the objective function, so
that the IP is unbounded too in this case.

• Finally, if the LP is feasible and bounded, it atteins it’s optimum in a vertex (that we can recorver
from the simplex algorithm). If the optimising vertex is integer, it’s feasible for the IP and therefore
solves the IP.

Recall the characterisation of vertices of the polyhedron P = {x : Ax = b, x ⩾ 0} encountered in standard
form LP:
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Proposition: A characterisation of vertices
v is a vertex of P = {x : Ax = b, x ⩾ 0} for A ∈ Rm×n ⇔ v ⩾ 0 is the unique solution to A∗Bx = b for
some m linearly independent columns of A indexed by B

Now, A−1
∗B =

1

det(A∗B)
(A∗B)adj where (A∗B)adj is the adjoint matrix of A∗B (who’s entries are the minor

of A∗B), if A has integer entries, so does (A∗B)adj , since its entries are sums and products of those of A∗B.
So if det(A∗B) = ±1, we have the guarantee that A−1

∗B has integer entries. Finally, if b has integer entries,
so does A−1

∗Bb. Therefore, for integer data, the condition det(A∗B) = ±1 on any invertible A∗B ensures
that all vertices are integer.
Summarising:

Definition/Proposition:
For A ∈ Zm×n and b ∈ Zm, the vertices of P = {x : Ax = b, x ⩾ 0} are integer if for all submatrices A∗B
of size m×m we have det(A∗B) ∈ {−1, 0, 1}, a criterion we’ll call unimodularity of A.

In practice we ususally deal with polytopes of the form P = {x : Ax ⩽ b, x ⩾ 0} which we convert to
Q = {x : (A|I)x = b, x ⩾ 0} by introducing slack variables. We therefore look for conditions on A so that
(A|I) is unimodular, to get a shortcut to integer vertices, for the polyhedra presented with inequalities only.

(A|I) is unimodular if its m × m submatrices have determinant ±1. These submatrices are obtained
by choosing columns of A and colums of I. By rearanging the columns according to their origin and by
rearranging the ordering of dimensions so that the columns of I chosen coorespond to the last numbered

dimentions, we are dealing with submatrices of the form
(
A′ 0
A′′ I

)
. Their determinant is therefor det(A′),

which we’d like to have in {−1, 0, 1}. This is the condition we retain:

Definition/Proposition:
For A ∈ Zm×n and b ∈ Zm, the vertices of P = {x : Ax ⩽ b, x ⩾ 0} are integer if for all submatrices A′ of
A of size k × k for k ⩽ m we have det(A′) ∈ {−1, 0, 1}, a criterion we’ll call total unimodularity of A.

Total unimodularity is a sufficient condition for showing that a polyhedron has integer vertices. However,
there are polyhedra with integer vertices who’s H-description is not totally unimodular. For example, if
we translate by an integer vector the 3-crosspolytope, so as for it to be in R3

+, it’s H-description is given

by the matrix


1 1 1
1 1 −1
1 −1 1

...

 and we see that the first 2× 2 submatrix corresponding to the first two line

and first and last columns has determinant
∣∣∣∣1 1
1 −1

∣∣∣∣ = −2.
We’ll give an example of totally unimodular matrices encountered in LP relaxations of combinatorial
optimization problems: the incidence matrices of graphs.
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Definition:

For a graph (V,E), the matrix D of dimensions |V | × |E| defined by dv,e =

{
1 if v ∈ e
0 else

is the incidence matrix of the graph.

For example, the incidence matrix appears in the LP relaxation two following problems:
Maximum matching: we look for a largest set of edges M ⊆ E so that all vertices of V are incident to
at most one edge of M . We can model and relax the problem as:

max

(∑
e∈E

xe

)
st.

{∑
e∈δ(v) xe ⩽ 1, ∀v ∈ V

x ⩾ 0
⇔ Dx ⩽ 1, x ⩾ 0

Minimum vertex cover: we look for a smallest set of vertices C ⊆ V such that all edges have at least
one end-point in C. We can model and relax the problem as:

min

(∑
v∈V

yv

)
st.

{∑
v∈e yv ⩾ 1, ∀e ∈ E

y ⩾ 0
⇔ −Dty ⩽ −1, y ⩾ 0

We’ll prove the following propositions, so that these LPs solve the combinatorial problems (for bipartie
graphs) by interpreting their solutions as indicator vectors: with the following proposition, we know their
vertices to be integer, and the constraints allow for no other integers then 0 and 1 as entries.

Proposition:
The incidence matrix of a bipartite graph is totally unimodular.

Proof: We prove this by induction on he size k of the submarices. For k = 1, we have the entries
of D which are 0 or 1. For the step, we disjoin nested cases and settle the easiest ones first. If the
submatrix has a 0-column, the determinant is 0. Otherwise, if there’s a colum, with only one non-zero
entry, we may develop the determinant (Laplace-formula) along the column, obtain the determinant of
another (k − 1) × (k − 1) submatrix as determinant and use the induction step to conclude. Finally, we
treat the case in which all columns have more then one non-zero entry. Since this is the incidence matrix
of a graph, this means that all columns have precisely two non-zero entries. Now, bipartiteness comes
into play: the edges connect vertices from different partition sets, meaning that the two non-zero entries
of each column correspond vertices of different partitions. So if we compute the determinant by summing
separately the rows along the partition sets of the vertices they correspond to, we get the same row as
sum, so that the determinant is 0.

Proposition:
If A is totally unimodular, so is its transposed At and it’s opposite −A.

Proof: The submatrices of one are the transposed ones of the submatrices of the other, so that their
determinants stay the same. For a change of sign, all determinants might undertake a change of sign,
depending on dimension, but in all cases, the determinants remain in {−1, 0, 1}.

We give a nice application of LP theory to the previous combinatorial problems.
The previous LPs are dual to each other! Strong duality of LPs implies that their optimal values are
the same. But we now know that these optimal values are attained in vertices corresponding to actual
matchings and covers. This is summarized by:
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Theorem: König, Egerváry, 1931
In a bipartite graph the maximum size a matching is also the minimum size of a vertex cover.

Ex.EdgeCol: An edge coloring of a graph is an assignment of colors to edges so that two edges with a
common endpoint have different edge colors. We’re interested in the minimum number of colors necessary
for such a coloring. Formulate this problem as an IP and interpret the dual of the LP relaxation.
Hints: Interpret coloring as partitioning the edges into matchings. Relate the dual to the maximum degree
of vertices of the graph.

To comńclude, we give a final result that shows the strength of investigating these combinatorial problems
from a polyhedral perspective. In b-matching, where given a number bv per vertex v and seek a set of edges
so that along these edges v is matched with at most bv other vertices. From a combinatorial viewpoint,
this is a problem quite new to us, and may require entirely new techniques. But for the bipartite case,
when using the IP formulation with xe indicating the use of edge e, the constraints are

∑
u∈δ(v)

xvu ⩽ bv.

Indeed, the constraint matrix is the node-edge incidence matrix of a bipartite graph, so it’s TU and the
corresponding polyhedron is integer. So we can solve bipartite b-matching with an LP.

Ex.Ori: Consider the problem of orienting the edges of a graph so that in the resulting digraph, all
vertices have in-degree at most k, for a given k. Give an algorithm to solve this.

We end this paragraph by an example that shows that MILPs can’t be solved by solving a fully inte-
ger constraint version of them, and then solving an LP on the real variables, fixing the integer ones to an
IP optimal solution:

Assume that we have a binary y-variable and a real x one. The red lines indicate the objective level sets.
If we solve for x integer, we get the lower right integer point. Then, for that y value, solving the LP in x
leads to the same point. Yet, the optimum is the upper right corner. By picturing the intersection of the
level lines with the upper line staying fixed while we slide the intersection with the lower line to the right,
we see that the distance between optimal solutions can become arbitrarily large.
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11.3 Branch-and-bound

INTERNAL NOTE: this section requires LP post-optimisation due to adding constraints.

We now make our first step in solving IPs.
The general idea is that of adding constraints to the LP relaxation of the IP that will make its solution
"closer" to that of the original IP. The whole difficulty of this approach is finding constraints that exclude
no feasible points of the IP. In branch-and-bound, we deal with this problem by reducing the problem to
2 sub-problems: one with the additional constraint, and one with its negation. The simplest such con-

straints is for example of form xi ⩽ k for k ∈ Z. We can use it to split the IP on

{
Ax ⩽ b

x ∈ Zn
into two on

Ax ⩽ b

xi ⩽ k

x ∈ Zn

and


Ax ⩽ b

xi ⩾ k

x ∈ Zn

and by integrality of x, we can actually split

{
Ax ⩽ b

x ∈ Zn
into


Ax ⩽ b

xi ⩽ k

x ∈ Zn

and


Ax ⩽ b

xi ⩾ k + 1

x ∈ Zn

. Indeed, the optimal solution to the first IP is in one of the two splitting halves of the

polyhedra, so that the solution of the two sub-problems with the best objective value will be optimal
solution to the first IP.

This may not seem like a great improvement at first, since the subproblems are as hard to solve as
the main one. The interesting thing is to see how this split interacts with the LP relaxation of IPs. For
the relaxations, the LP hasn’t exactly split: the solutions for which k < xi < k + 1 are discarded. We
therefore expect them to give more precise information then the relaxation on the initial polyhedron.

For example, consider the figure below: the grid joints represent the integer points and our polyhedron is
the gray triangle. We want to maximise y for integer points in the polyhedron. The LP relaxation returns
the top of the triangle as solution, which isn’t integer.
We then make our first cut, cutting on x ⩽ k and x ⩾ k + 1, represented by the red lines.
In the next figure below, we get the two polyhedra resulting from the cut. The blue points are the solutions
to the respective LP relaxations, and the red point is the optimal solution to the initial IP. We see that
the solution on the right polyherdon is much closer to the IP solution then that of the initial relaxation,
whereas the one of the second solution is much worse.
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Note that the solution of the LP on the left polyhedron is integer. This is good because it allows us to say
that all integer points of the left polyhedron will give an objective value less then that of this solution.
There is therefore no need to investigate the left polyhedron further.

There is a second advantage of finding a integer solution to an LP after a split. If we make another
split as in the figure below, we see that the LP on the right polyhedron has an optimal value less then
that found in the left polyhedron.
Since the solution on the left polyhedron is integer and we now know it’s value to be greater then the opti-
mal one on the right polyhedron, we know that all integer points of the right polyhedron have sub-optimal
values. We can therefore ignore the right polyhedron in our search.
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Our first split seemed reasonable, because the we split close to the optimal solution of the LP relaxation,
and intuition suggests that the optimal integer solution can’t be far away from the LP solution. Also, this
split prohibited the solution to the first LP from also being the solution to one of the two sub-LPs. Since
our ultimate goal is to find an integer solution, this last fact is a sign of progress.
Our second split, for example, wasn’t that helpful as the middle polyhedron has the same LP solution as
the right one before the second split.
In branch-and-bound, we split with xi ⩽ k and xi ⩾ k + 1 where i is an index for which the previous
optimal solution was fractional. This maintains the integral coordinates of the optimal solution.

With this splitting rule, the second split would be the one in the figure below. This split illustrates
a last case that can appear in a split: on of the sub-problems is infeasible. Here, we see that the upper
part of the split is empty. Of course, this restricts our search to the lower half.
In the lower half, the optimal value is attained by an integer point. As in the first cut this means that we
don’t need to investigate the polyhedron further.
Then, we are done, because all the sub-problems are either infeasible or have integer solutions. Since the
solution of the IP must be feasible for on of the sub-problems, this means that the greatest integer solution
among the solutions to the sub-problems (here, the blue dot and red dot) is the solution to the IP (here,
the red dot).

We now summarise the branch-and-bound procedure.
To keep track of the sub-problem hierarchy, we represent the problems with a binary tree. The nodes of
this graph represent the problem on a particular polyhedron. The root of the tree is the initial problem.
When we split, the node gets two new neighbours, its "children". Each child is the problem on one of the
splitting halves of the previous polyhedron.
The leaves of the tree are the sub-problems to be investigated. We investigate them by solving their LP
relaxation. Five cases can then occur:

• The LP is infeasible. Then there is on need to split further: we just ignore this node for the rest of
the search.

• The LP is unbounded. Then the initial IP is unbounded too.
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• The LP is feasible, but its solution has less optimal value then then that of a previously known integer
feasible solution. Then we know that all integer solutions to the sub-problem are sub-optimal for
the initial problem, and we can ignore the node for rest of the search.

• The LP is feasible, and has an integer optimal solution. Unless this solution falls into the previous
case, it’s our currently best known integer solution. We therefor ignore the previously best integer
solution in our search, and let this new solution be the the new bound for optimal integer solutions.

• Finally, if the LP is feasible, with better solution then the best currently known integer solution, but
with non-integral solution, then we split. We split with xi ⩽ k and xi ⩾ k + 1 where i is an index
so that xi is not integral for the current LP solution. There may be multiple choices for this index,
so for concreteness, we’ll choose the smallest such index.
This case produces to new child-nodes, new leaves, to be investigated, whereas the current node
seizes to be a leaf and will therefor not be considered in further study.

We keep on going like this until no more investigations need to be done. This means that all leaves in
the tree correspond to infeasible problems, or problems with known integer solutions. When all leaves are
in this state, the best known integer solution (that we kept track of along the way to discard LPs with
sob-optimal solutions) is the solution to the IP.

The natural question is then to find out if this procedure terminates. Can we split indefinitely ?
This can’t happen when the initial polyhedron is bounded. If we consider the splits on one variable,
we’ll arrive at inequalities xi ⩽ ai and xi ⩾ bi that are incompatible with the polyhedron, so that we
end in infeasible nodes in these cases. Since there are such ai and bi for all indices i, we’ll split at most
Π(bi − ai + 1) times.
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Solve next LP

Feasible ?

Unbounded ?

Any leaves left
to explore ?

LP relaxation as
first unexplored leaf

Terminate.
Case: unbounded

yes

yes

yes

no

no

Mark leaf
as explored

Integer
solution ? yesno

Worse then best
integer solution

yes
no

no

Return best integer
solution

Mark leaf
as explored

Update best
integer solution
if necessary,
and mark leaf
as explored

Branch on a fractional
variable: add two
children to the node,
with branching
constraints

Branch-and-bound can be adpted to MILPs by branching of fractional values of integer variables.
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11.4 Gomory cutting planes

The idea of cutting plane algorithms for solving IPs is that of adding additional contsraints (cutting planes)
that don’t exclude interger point solutions, but exclude LP relaxation solutions. This has the effect of
the relaxation with the additional constraint gives a better bound on the IP and most importantly, that
an integer solution to the relaxation solves the IP. Indeed, since all integer point solutions verify the con-

straints, we have

{
Ax ⩽ b

x ∈ Zn
⇔


Ax ⩽ b

Cx ⩽ d

x ∈ Zn

for cutting planes ci·x ⩽ di, so that a integer solution on the

last problems relaxation is also optimal for the first problem.
These constraints are added successively and we want to find a method of adding these constraints so that
we’re guaranteed to have one of the relaxations have an integer solution after finitely many additions of
constraints.

For example, for


x+ y ⩽ 1, 5

x, y ⩾ 0

x ∈ Zn

⇔ (x, y) ∈ {(0, 0), (0, 1), (1, 0)}, the constraints x + y ⩽ 1 +
1

10k

are cutting planes for all k ⩾ 1, as they leave the set of integer solution unchanged. However, if we

which to maximise x+y, none of the relaxations with underlying polyhedra


x+ y ⩽ 1, 5

x, y ⩾ 0

x+ y ⩽ 1 + 1
10q , q ⩽ k

⇔

{
x+ y ⩽ 1 + 1

10k

x, y ⩾ 0
will have optimal integer solutions, so this is the type of cutting plane construction

we which to avoid.

Gomory cutting planes:
Gomory cuts are cutting planes generated from the simplex algorithm.

For an IP given in LP standard form

{
Ax = b

x ⩾ 0
, we solve its LP relaxation with the simplex algorithm.

The constraint part of the final tableau is of form (I|M)x = d, where we’ve permuted variables so that
the basic variables of basis B are in the first dimensions. If d is integral, then since the optimal solution
is atteined in d (get the solution by setting non-basic variables to 0) and the LP relaxation solves the IP.
Otherwise, there is an entry di that’s not integer.

All solutions, including integral ones, must verify xi +
∑
j /∈B

mijxj = di. By cutting mij into its whole

and fractional parts, mij = ⌊mij⌋ + (mij − ⌊mij⌋) and similarly for di, we see that xi +
∑
j /∈B

⌊mij⌋xj +∑
j /∈B

(mij − ⌊mij⌋)xj = ⌊di⌋+ (di − ⌊di⌋), and arraging integral and fractional parts on either side, we get∑
j /∈B

(mij − ⌊mij⌋)xj − (di − ⌊di⌋) = ⌊di⌋ − xi −
∑
j /∈B

⌊mij⌋xj . If we take a closer look at the right side

of the equation, which looks oddly similar to the one we started with, recalling that x ⩾ 0, we have
xi +

∑
j /∈B

⌊mij⌋xj ⩽ xi +
∑
j /∈B

mijxj = di. For non-integer x, this inequation can be tight, but for integer x,

since then xi +
∑
j /∈B

⌊mij⌋xj is integer, we can give a better bound xi +
∑
j /∈B

⌊mij⌋xj ⩽ ⌊di⌋.
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This rephrases to
∑
j /∈B

(mij − ⌊mij⌋)xj ⩾ (di − ⌊di⌋) for integer solutions, an inequality violated by the

optimal solution of the LP relaxation, for which the basic variables are 0, but (di − ⌊di⌋) > 0 as di isn’t
integer.

Definition:
The inequality

∑
j /∈B

(mij − ⌊mij⌋)xj ⩾ (di − ⌊di⌋) is a Gomory cut / cutting plane.

If the IP isn’t in this standard form, we can’t necessarily transform it to an IP in standard form. For

example,

{
0 ⩽ x ⩽

√
2

x ∈ Z
isn’t the projection of

{
x+ s =

√
2

x, s ⩾ 0, x, s ∈ Z
as 1 is feasible in the first, but there

is no integer slack s so that 1 + s =
√
2.

This is problematic for our study because Gomory cuts are based on the standard form.
However, for a rational matrix A ∈ Qm×n and vector b ∈ Qm, we see that by multiplying Ax ⩽ b by the
gcd of all the entries denominators, we may assume that A ∈ Zm×n and b ∈ Zm. In that case, the slack
s = b−Ax is integer for integer x. So for rational A and b, we can bring the IP in standard form.

Remarks: We can also use the line corresponding to the costs to generate Gomory cuts. Note that the
Gomory cuts coefficients are fractional. If the LP solution with the Gomory cut is still fractional, we can
use Gomory cuts again. In that case, we’ll have to bring the cut to integer coefficients by multiplying by
denominators.

Indeed, the immediate question is whether we’ll ever find an integer solution with successive Gomory cuts,
or if this procedure could go on forever. The sequence zn of optimal values obtained by iterating Gomory
cuts is monotone and if we assume a minimization IP to be bounded, it must converge to some z.
TO COMPLETE: lexicographic stuff

MIP Gomory cuts:
We now consider MIPs, which differ from IPs in that some of there variables are integer- and others are
real-valued. The feasible solutions of a MIP can be thought of as follows: when fixing the integer variables,
the continuous variables describe a polyhedron, so the feasible set is a union of disjoint polyhedra, indexed
by the values of the integer variables.
Similarly to IPs, we can try to solve MIPs by solving their LP relaxation and hoping that the optimal
solution of the relaxation is feasible. As, with IPs, if the latter isn’t the case, we can look for cutting
planes that are valid for the feasible set and cut off the current relaxation optimum.
When solving the relaxation with the simplex algorithm, we can end up with a feasible optimum or an
infeasible optimum. The latter case happens when for some basic integer variable xi, the optimal tableau
has form xi +

∑
j∈N

aijxj = bi with bi /∈ Z. If we denote by f0 the fractional part of bi, we know that for all

feasible solutions of the MIP, xi−⌊bi⌋ = f0−
∑
j∈N

aijxj is a integer, so that we can perform a branch-and-

bound style split. Indeed, the feasible solutions to MIP either verify f0−
∑
j∈N

aijxj ⩾ 1 or f0−
∑
j∈N

aijxj ⩽ 0.
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At this stage, we could continue with a branch-and-bound approach, but we’ll take a different one. Recall
that in a cutting plane approach for MIPs, the goal was to find cutting planes valid for all polyhedra of
the feasible set. This approach provides the following tool:

Proposition: Disjunctive programming principle
For polyhedra P and Q in the positive orthant Rn

+ with valid inequalities a·x ⩽ b and c·x ⩽ d respectively,
and for any e ⩽ min(a, c) (component-wise) and f ⩾ max(b, d), the inequality e·x ⩽ f is valid for P ∪Q.

With this, if we define P as the hull of the feasible MIP solutions for which f0 −
∑
j∈N

aijxj ⩾ 1 holds and

Q that of those for which f0−
∑
j∈N

aijxj ⩽ 0, then we can build new cutting planes for the MIP solutions.

Proof of the principle: e·x ⩽ a·x and e·x ⩽ c·x as x ⩾ 0 and e ⩽ min(a, c), and a·x ⩽ b ⩽ f and
c·x ⩽ d ⩽ f , so whenever a·x ⩽ b or c·x ⩽ d holds, e·x ⩽ f holds. This is the case on P ∪Q. □

We’ll use this principle for our MIP and our inequalities
∑
j∈N

aijxj ⩽ f0 − 1 and
∑
j∈N

(−aij)xj ⩽ −f0

to get the valid inequality
∑
j∈N

(−|aij |)xj ⩽ max(f0 − 1,−f0). This inequality does cut of the current

relaxation solutions, as setting the non basic variables of N to 0 and remarking that max(f0−1,−f0) < 0.

We can actually produce better inequalities, with a deeper analysis. First, when returning to xi +∑
j∈N

aijxj = bi with bi /∈ Z in the initial optimal tableau, we can note that for integer scalars sk in-

dexed over the integer variables (I), we have xi − ⌊bi⌋ −
∑
j∈I

sjxj = f0 −
∑
j∈N

aijxj −
∑
j∈I

sjxj integer for

all feasible MIP solutions. Splitting on ⩾ 1 and ⩽ 0 as before, we get f0 −
∑
j∈N

aijxj −
∑
j∈I

sjxj ⩽ 0,

equivalent to −
∑
j∈N

aijxj −
∑
j∈I

sjxj ⩽ −f0, as well as f0 −
∑
j∈N

aijxj −
∑
j∈I

sjxj ⩾ 1, equivalent to

f0
1− f0

∑
j∈N

aijxj +
∑
j∈I

sjxj

 ⩽ −f0 (we do this to simplify the f ⩾ max(b, d) part of the disjunc-

tive principle). To get the e of the disjunctive principle, we have to find min

(
f0

1− f0
aij ,−aji

)
for the

continuous variables of N\I and min

(
f0

1− f0
(aij + sj),−(aji + sj)

)
for the integer ones of N ∩ I. For

the first type of variables, min

(
f0

1− f0
aij ,−aji

)
=

{
f0

1−f0
aij : aij ⩽ 0

−aji : aij ⩾ 0
and for the second type, as we

which to get a big e for an inequality that is as tight as possible, we need sj to bring (aij + sj) as close to
0 as possible, as the minimum is over opposite sign multiples of (aij + sj).
If fj denotes the fractional part of aji, then the closeset we can bring (aij+sj) to 0 is by setting sj = −⌊aij⌋
or sj = −⌊aij⌋ − 1, in which case (aij + sj) = fj or (aij + sj) = fj − 1. So in the first case the minimum

is −(aji + sj) = −fj and in the second it’s
f0

1− f0
(fj − 1). So we can choose sj ∈ {−⌊aij⌋,−⌊aij⌋ − 1}

depending on which of −fj and
f0

1− f0
(fj − 1) is largest. This in turn depends on whether fj ⩾ f0 as
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f0
1− f0

(fj − 1) ⩾ −fj ⇔ fj ⩾ f0.

Summerising, the cut we produced is:

Definition:
The MIP Gomory cut is∑

j∈N\I,aij⩽0

f0
1− f0

aijxj −
∑

j∈N\I,aij⩾0

aijxj −
∑

j∈N∩I,fj⩽f0

fjxj +
∑

j∈N∩I,fj⩾f0

f0
1− f0

(fj − 1)xj ⩽ −f0

INCLUDE: termination of algorithm...

Since IPs con be considered as MIP for which the set of continious variables is empty, an interesting
question is to ask what Gomory mixed integer cut look like for IPs.

They have form
∑

j∈N,fj>f0

f0
1− f0

(fj − 1)xj −
∑

j∈N,fj⩽f0

fjxj ⩽ −f0. Is this the integer Gomory cut in

disguise or is it a different, better or worse cut ?
In case all j ∈ N verify fj ⩽ f0, we do indeed recover the integer Gomory cut. But when fj > f0, we

can compare the coefficients of the cuts with by equivalences −fj <
f0

1− f0
(fj − 1) ⇔ fj

1− fj
>

f0
1− f0

where this last expression is true for fj > f0 as x 7→ x

1− x
is increasing. Since the variables are positive,

−fj <
f0

1− f0
(fj − 1) for fj > f0 implies that all variables verifying the Gomory mixed integer cut also

verify the Gomory integer cut, so that the first cuts off more of the polyhedron, and is therefore better.
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11.5 Branch-and-cut

One can combine branch-and bound and Gomory cuts into a single methods by letting the two alternate.
There are multiple variants of branch-and-cut. We present the following: we adapt branch-and-bound by
adding cutting planes to a sub-problem before branching on it.
To be precise, we first check if the problem is feasible, if it can’t be pruned due to bounds, if it’s unbounded
and if it’s optimal. After these checks, in branch-and-bound, we would branch on a variable. In branch-
and-cut, we first start solving the sub-problem with Gomory cuts. That is, we add Gomory cutting planes
in the way described in the previous chapter. We can set a limit on the number of cuts to add, say k cuts
at most. If the sub-IP has been solved with less then these k Gomory cuts, then we treat this problem
like one with optimal integer solution in branch-and-bound, and proceed as in branch-and-bound, which
is by solving the next sub-problem if any are left. If the sub-IP hasn’t been solved with less then these k
Gomory cuts, we branch on a variable as in branch-and-bound.

Branch-and-cut terminates for the same reasons as branch-and-bound (under the same additional assump-
tions): in the worst case, the branch-and-bound sub-problem tree ends with as many leaves as feasible
solutions to the IP. The hope with branch-and-cut is that, depending on the parameter k, certain problems
will be solved with cuts only, so there is no need to branch.
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11.6 Cutting plane algorithms for combinatorial problems

For problems with a particular structure in the constraints, such as IPs modelling a combinatorial problem,
it may happen that we need exponentially many constraints. We now describe how to handle this problem.

TSP:
The travelling salesman prosblem (TSP) provides n cities and travelling costs cij ⩾ 0 between cities i and
j (assumed symmetric) and asks for an order in which to visit all cities so that the total travelling cost is
minimum. If the costs cij form a metric (they satisfy the triangular inequality), the tour we seek visits all
cities only once, as if skipping previously visited cities forms a tour of lower cost.
We can model the problem by a complete graph Kn with edge weights cij , so that the tour we seek is
a minimum cost cycle passing through all vertices. We can also give an IP formulation by defining in-
dicator variables xij ∈ {0, 1} and objective

∑
i,j∈[n]

cijxij . We can try to get a cycle by setting constraints∑
j∈[n]

xij = 2 for all vertices i: all cities are traversed once. If you think these constraints are sufficient,

let the following be a lesson in rigour to you. Actually, these constraints allow for graphs that are mul-
tiple disjoint cycles ! Indeed, we can find such cycles sequentially, starting at a vertex and following the
edges for which xij = 1 until we have a repetition of vertices, then continue with a vertex not on this cycle.

So we need constraints that prohibit multiple disjoint cycles, in terms of edges. To this end, we re-
mark that if disjoint cycles occur, then we can partition the vertices into S and [n]\S with ∅ ⊊ S ⊊ [n],
and have no edges between vertices of S and [n]\S. We can prohibit this with constraints

∑
i∈S,j /∈S

xij ⩾ 1

for all ∅ ⊊ S ⊊ [n], and more sharply
∑

i∈S,j /∈S

xij ⩾ 2, as
∑

i∈S,j /∈S

xij = 1 would imply that all i ∈ S

but a city k ∈ S have their neighbours in S too so that by walking in S starting from k, we’ll reach a
contradiction once we run out of vertices of S to walk to.

Ex.TSPineq: We could have prohibited disjoint cycles diffeently then with the constraints
∑

i∈S,j /∈S

xij ⩾ 2

for ∅ ⊊ S ⊊ [n]. Indeed, to prohibit a cycle on vertices ∅ ⊊ S ⊊ [n], one can add the constraint∑
ij∈E(S)

xij ⩽ |S| − 1, where the summ is over the edges induced by S: such cycles have S| edges. Show

that these families of inequalities are equivalent.

We’ll ignore the question of whether these inequalities do or not describe the integer hull of all the
indicators of the Hamiltonian cycles. If we solve the LP relaxation of the IP, we’ll get a lower bound on
the best TSP tour.
Note however that these last inequalities are in number 2n − 2, so for a large number of cities, we can’t
use the simplex method, as our computer won’t be able to store the tableaus. But there is hope.

The constraint can be reformulated as saying the graph has no cut of value less then 2. We can check this

by finding all minimum s-t-separating cuts for capacities xij , for all
(
n

2

)
=
n(n− 1)

2
pairs of cities, which

can be derived from max-flow algorithms running in polynomial time and space. If one of these cuts has
value less then 2, then the corresponding constraint

∑
i∈S,j /∈S

xij ⩾ 2 is the violated one, and it provides

the separating hyperplane, as the feasible y satisfy
∑

i∈S,j /∈S

yij ⩾ 2 >
∑

i∈S,j /∈S

xij . Otherwise, all cuts of the
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graph along the bipartiton S and [n]\S, which are s-t-separating cuts for some cities s ∈ S and t /∈ S (not
unique) and therefore have capacity greater then the minimum s-t-separating cuts, which we have checked
to have capacity greater then 2, must therefore have capacity greater then 2, so that

∑
i∈S,j /∈S

xij ⩾ 2. We

therefore know that x is feasible.

With this remark, we present the following method. We start solving the LP without the cut-constraints.
We then perform the check of the previous paragraph (this is called a separation oracle). If we get a
constraint that is violated, then we add it to the LP a re-solve it. We keep resolving until we find a
solution for which the separation oracle tells us that it’s feasible.

Alternatively, one can just add the n(n−1)
2 additional inequations derived from the minimum cuts, as

these imply all other cut-constraints.
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11.7 Solutions

Ex.Sudoku:
We can use indicator variables xijk to express the fact that cell (i, j) of the Sudoku table has entry k ∈ [9].
The Sudoku table contains initial values, for which we add constraints xijk = 1. Next, an cell may contain
exactly one entry:

∑
k xijk = 1. Lines, columns and boxes correspond to index sets S: for each such set,

we want to put the entry k exactly once, so that
∑

ij∈S xijk = 1. This model uses 93 = 729 variables and
at least (most) 92 + (3.9).9 + 2.93 = 1782 constraints.

Ex.CHH:
We’ll prove that the points of {x ∈ Zn : a·x ⩽ b} verify the inequality

(
1

g
a

)
·x ⩽

⌊
b

g

⌋
, so that their

convex hull does too. This will prove {x ∈ Zn : a·x ⩽ b}I ⊆
{
x :

(
1

g
a

)
·x ⩽

⌊
b

g

⌋}
.

So for integer points x, since
1

g
a is also an integer vector,

(
1

g
a

)
·x is an integer with upper bound

b

g
,

which we may lower to
⌊
b

g

⌋
.

We then prove by constadition that {x ∈ Zn : a·x ⩽ b}I ⊊
{
x :

(
1

g
a

)
·x ⩽

⌊
b

g

⌋}
is impossible, so

that the sets are equal. So if there’s a point y verifying
(
1

g
a

)
·x ⩽

⌊
b

g

⌋
but not in the convex set

{x ∈ Zn : a·x ⩽ b}I , we can separate y from {x ∈ Zn : a·x ⩽ b}I with the hyperplane c·x ⩽ d, which is
valid for {x ∈ Zn : a·x ⩽ b}I but not for y.

We now show that there is an integer point x for which
(
1

g
a

)
·x =

⌊
b

g

⌋
, an in particular a·x ⩽ g

⌊
b

g

⌋
⩽ b,

so that x ∈ {x ∈ Zn : a·x ⩽ b}I . This will prevent c and
(
1

g
a

)
from being parallel, as the halfspace(

1

g
a

)
·x ⩽

⌊
b

g

⌋
contains points points on both sides of c·x = d.

To prove this last claim, we use Bézout’s identity (theorem from arithmetic) that provides an integer

solution to a·x = g, and by multiplying this by
1

g

⌊
b

g

⌋
and distributing

(
1

g
a

)
·
(⌊

b

g

⌋
x

)
, we get the

desired result.
As we mentioned, we now now that c and

(
1

g
a

)
aren’t parallel. A nice trick can then be used to find

integer points on the plane
(
1

g
a

)
·x =

⌊
b

g

⌋
for which c·x ⩽ d is false, contradicting its validity for

x ∈ {x ∈ Zn : a·x ⩽ b}I (since
(
1

g
a

)
·x =

⌊
b

g

⌋
implies a·x ⩽ b).

This trick uses a fact related to cross-products. We’ll find a condition implied by parallelism, which c and(
1

g
a

)
won’t therefore have: if

(
1

g
a

)
= v and c = λv for some non-zerp scalar λ, the by looking at the

components and solving equations for λ, we see that for all pair of indices
ci
vi

=
cj
vj

. So in our case, there

must be indices so that civj ̸= cjvi so that up to permutation of indices, civj − cjvi < 0.

The points pλ = x + λ(viej − vjei) for an integer point of
(
1

g
a

)
·x =

⌊
b

g

⌋
are still on

(
1

g
a

)
·x =

⌊
b

g

⌋
since

(
1

g
a

)
= v and v· (viej − vjei) = 0. So for all λ for which pλ is integer, pλ is in the integer hull and
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c· pλ ⩽ d must hold. But c· pλ = c·x + λ(c· (viej − vjei)) > d for large enough λ as c· (viej − vjei) > 0.
This is the contradiction we were looking for.

Next, since ∩i
(
H+

i

)
I

is convex and contains the points of P ∩Zd =
(
∩iH+

i

)
∩Zd, we have PI ⊆ ∩i

(
H+

i

)
I
.

Integer programming would be easy to solve if the converse inclusion would hold, as we could compute an
H-description of PI and solve the LP on it.

This isn’t the case, however, as proves the following polyhedron:



y ⩽ 2x

2y ⩾ 1− x
y ⩽ 2(1− x)
2y ⩾ x

x, y ⩾ 0

(draw it!).The first and

third inequlity prohibit y ⩾ 2 and the third and fourth that x ⩾ 2 (by contradiction). All 0-1-points
are infeasible. So the integer hull of this polyhedron is empty, yet the polyhedron isn’t empty (it has
(1/2, 1/2)) and all the hyperplanes defines halfspaces equal to their integer hull.

Ex.RelaxEx:

Consider the IP min(y) on the polyhedron


x ⩽ 1

2y ⩾ x

x, y ⩾ 0

(draw it!). The polyhedron is not integer, as

(
1,

1

2

)
is a vertex. Yet solving the LP relaxation yields the solution (0, 0) which is also feasible for the

IP and thereby solves the IP.

Ex.Knap1:
We prove th contaposition: an x that is infeasible for the standard knapsack formulation must violate
one of the

∑
i∈C

xi ⩽ |C| − 1 constraints for some cover C. So for an x with
∑
i∈[m]

wixi > W , we consider a

subset S of smallest size so that
∑
i∈S

wixi > W : such a set exists as at least the set of all items [m] has

this property, and the size of a set is an positive integer. Such a set S must actually be a minimum cover,
as otherwise, we could delete one of its element and obtain a set of smaller size for the property that S is
minimal for. On that set, all xi = 1, for otherwise we would get could delete the indices for which xi = 0

from S and maintain
∑

i∈S\{i:xi=0}

wixi > W , yielding a smaller set for the property that S is minimal for.

So finally,
∑
i∈S

xi = |S| > |S|− 1 and S is the minimal cover that x violates the constraint of, that we were

looking for.

Ex.EdgeCol:
For each color, the edges of that color can’t have their endpoints in common: they form a matching.
So a coloring is a partitionning of edges into matchings. For the set S of matchings, we let y be the
indicator vector of the matchings chosen for the coloring. Each edge should be colored with one color, so
we get constraints ∀e ∈ E,

∑
M∈S:e∈M

yM = 1. Our goal is to minimise the number of colors, so our LP is

min
∑
M∈S

yM st.

{
∀e ∈ E,

∑
M∈S:e∈M yM = 1

y ∈ {0, 1}|S|
. We can relax the LP relaxation further to min

∑
M∈S

yM
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st.

{
∀e ∈ E,

∑
M∈S:e∈M yM ⩾ 1

y ⩾ 0
, which gives a worse lower bound on the minimum coloring but who’s

dual is easier to compute. The dual is max
∑
e∈E

xe st.

{
∀M ∈ S,

∑
e∈M xe ⩽ 1

x ⩾ 0
. It asks for a maximum

number of edges that aren’t in a common matching. This happens when the each pair of such edges have
an endpoint in common (otherwise, two disjoint edges form a matching of which we’ve taken more then
one edge). This prohibits such edges to form a path of length 3 or more and the case of a triangle allows
for no further edges. To be brief, the only subgraphs these edges can form are stars: one central vertex
and only leaves. The size of a stars is the degree of it’s central vertex. So the dual is actually looking
for the vertex of largest degree. Weak duality now give a natural result: the minimum coloring is greater
then the largest degree. This is true because at the vertex of largest degree, all edges must have different
colors.

Ex.Ori:
The trick is to represent the problem as follows, reducing it to maximum bipartite b-matching. We rep-
resent the edges of the graph by a node set A and the actual nodes of the graph by a second node set
B and link {u, v} ∈ A to u ∈ B and v ∈ B. In a b-matching with b{u,v} = 1 and bv = k, an edge is
assigned to on of its endpoints, which will represent the endpoint the oriented edge will point to, and
bv = k insures that at most k edges point to v, so that its in-degree is at most k. We can solve for the
maximum bipartite b-matching by solving an LP, as discussed when we introduced b-matching. If the
maximum such b-matching has size |E|, all edges can be oriented so as to have the desired property and
conversely, such an orientation provides a solution of value |E|.

Ex.TSPineq: We relate the sums over the cut associated to S and the edges induced by S. We count
all edges that have at least one of their enpoints in S, disjoining on the number of such endpoints: we get∑
i∈S,j /∈S

xij + 2
∑

ij∈E(S)

xij =
∑

i∈S,j∈[n]

xij as the edges in E(S) are counted twice, for both endpoints. We’ll

make use of the other constraints,
∑
j∈[n]

xij = 2, since
∑

i∈S,j∈[n]

xij =
∑
i∈S

∑
j∈[n]

xij = 2|S|. Now we can see

that
∑

i∈S,j /∈S

xij ⩾ 2⇔ 2|S| − 2
∑

ij∈E(S)

xij ⩾ 2⇔
∑

ij∈E(S)

xij ⩽ |S| − 1.
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12 More approximation methods

12.1 LP rounding

One can model combinatorial optimization problems as IPs, as we’ve seen in the section on polyhedron
combinatorics. Since solving the IPs exactly is hard, but solving their LP relaxation is easy, a interesting
question is whether we can exploit the LP solution to obtain a feasible solution for the combinatorial
problem, with value close to the optimal one.

Recall the minimum vertex cover problem introduced in the section on LP relaxations and total uni-
modularity:
Minimum vertex cover: we look for a smallest set of vertices C ⊆ V such that all edges have at least
one end-point in C. We can model and relax the problem as:

min

(∑
v∈V

yv

)
st.

{∑
v∈e yv ⩾ 1, ∀e ∈ E

y ⩾ 0

Given an optimal solution to the LP relaxation of the IP formulation of the problem, we can use the
following heuristic to produce a vertex cover with good value: if the variable yv associated to vertex v is
close to 1, we add the vertex to the cover set. For example, for a parameter k, we add the vertex to the

cover if yv ⩾
1

2
. Does this rule produce a vertex cover ? And if so, how good is this cover ?

The inequalities yu + yv ⩾ 1 per edge (and y ⩾ 0) force one of the variables to be greater then
1

2
(other-

wise, both would be strictly less then
1

2
, so that yu + yv < 1): so all edges have an endpoint in the set

C =

{
v : yv ⩾

1

2

}
, which is therefore a cover.

To judge the quality of the cover, we analyse the LP solution’s value: zLP =
∑
v∈V

yv =
∑
v∈C

yv +
∑

v∈V \C

yv ⩾

1

2
|C| by the definition of C and positivity. For the minimum size of a vertex cover OPT , we know that

the relaxation provides a lower bound OPT ⩾ zLP , so that our rounding heuristic provides
|C|
OPT

⩽ 2.
This heuristic is known as "LP rounding", and in the case of minimum vertex covers, it provides a 2-
approximation algorithm.

Ex.RoundMatch: Find an approximation algorithm for the maximum matching problem (same sec-
tion as minimum vertex cover) using LP rounding. This won’t be actually be an approximation algorithm
for general graphs: you have to add an assumption to the solution of the LP relaxation for this to work.
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12.2 Randomised LP rounding

In our previous rounding heuristic for the minimum vertex cover problem, we can improve the heuristic
to better fit our intuition by including a vertex v in the cover with probability yv, for an optimal solution
y of the LP relaxation of the IP formulation of the problem.
With this heuristic, by using Yv as the indicator random variable that indicates whether v is included in
the cover, the cover has size C =

∑
v∈V

Yv which we expect to be E(Y ) =
∑
v∈V

yv = zLP ⩽ OPT . So if C

turns out to be a cover, we expect it to be optimal !

Unfortunately, the probability p that C is a cover is hard to bound. By bounding the opposite event
that an edge isn’t covered by the union of the events that a particular edge isn’t covered, we get
1 − p ⩽

∑
uv∈E

(1 − yu)(1 − yv). In an attempt to get a clearer bound, we can use 1 − x ⩽ e−x, so

that (1− yu)(1− yv) ⩽ e−(yu+yv) ⩽ e−1 as yu+ yv ⩾ 1, to get 1− p ⩽ |E|e−1. This bound is awful, but we
can improve on it. We’ll show that using the same procedure with different probabilities for vertex inclu-

sion, we get 1−p ⩽ |E|e−(k+1) ln(|E|) =
1

|E|k
, which is a great bound, for a parameter k > 0. Backtracking

our reasonning, we see that we can get this desired bound if the probability of edges uv not being covered
is [(1− yu)(1− yv)](k+1) ln(|E|). This can be achieve by including a vertex v to the cover with probability
1− (1− yv)(k+1) ln(|E|).

However, this new probability affects the expected size of the cut: now, it’s E(Y ) =
∑
v∈V

1 − (1 −

yv)
(k+1) ln(|E|). To get a better picture of this expectation, we can use the inequality of the mean (calculus)

on the segment [0, yv] ⊂ [0, 1] and bound the derivative of f(x) = (1− x)(k+1) ln(|E|) by (k + 1) ln(|E|) to
get E(Y ) =

∑
v∈V

1− (1− yv)(k+1) ln(|E|) ⩽ (k+1) ln(|E|)
∑
v∈V

yv = (k+1) ln(|E|)zLP ⩽ (k+1) ln(|E|)OPT .

We therefore obtain a (k + 1) ln(|E|)-approximation algorithm who’s output is a cover with probability

p ⩾ 1− 1

|E|k
.

Ex.MaxCutLPround: Consider the Max-cut problem on graph (V,E) with positive edge weights w
that asks for a bipartition of vertices into A ⊆ V and V \A so that the weight of the edges in the cut of

this bipartition
∑

e∈δ(A)

we is maximum. Model this as an IP and derive a
1

2
-approximation algorithm for

it using randomised rounding.
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12.3 Primal-dual method

So far, our strategy to get an approximation ratio for some LP rounding approximation algorithm has
been the following: for a minimisation problem with optimal value OPT and LP relaxation value P, we
try to get ALG ≤ αOPT form a bound of type ALG ≤ αP since P ≤ OPT .
Another strategy could be the following: we consider the dual to the LP, which has optimal value D, and
weak duality provides D ≤ P so that ALG ≤ αD also provides ALG ≤ αOPT . We could therefore try to
use the dual to get heuristics.

The hitting set problem:
In the hitting set problem, we are given a population E and categories Ti ⊂ E. We which to find a
committee of individuals e ∈ E such that all categories are represented in it. Hiring individual e in this
committee incurs cost ce, so our objective is to achieve our representation goal with lowest cost.

We use the characteristic vector x of E so that the conditions translate to

{∑
e∈Ti

xe ⩾ 1, ∀i ∈ [n]

xe ∈ {0, 1},∀e ∈ E
and

we minimise
∑
e∈E

cexe. We can relax this to minimising
∑
e∈E

cexe over

{∑
e∈Ti

xe ⩾ 1, ∀i ∈ [n]

xe ⩾ 0,∀e ∈ E
as all

optimal solutions on it must verify xe ⩽ 1, since otherwise, one could decrease one of the variables to 1
without violating constraints (the constraints not containing the decreased variable can be ignored, and
those containing it are still true if we decrease it to 1, as the variables are positive), but decreasing the
objective.

The dual of this LP is that of maximising
∑
i∈[n]

yi such that

{∑
i:e∈Ti

yi ⩽ ce,∀e ∈ E
yi ⩾ 0, ∀i ∈ [n]

.

Complementary slackness informs us that the primal variables that are non-zero are those for which the
inequalities of the dual are tight. We can use this as a heuristic to get an algorithm which won’t require
solving an LP.

The algorithm works as follows. We start with y = 0 and raise coordinates of y until one of the in-
equalities

∑
i:e∈Ti

yi ⩽ ce becomes tight (in which case it stays tight for the rest of the algorithm, by

positivity of the variables and the only allowed action being increasing them) and add the corresponding
e to the hitting set (committee) A. This algorithm terminates when no more yi may be increased (by a
non-zero amount) without one of the constraints being violated. This is known as a primal-dual algorithm.

We consider the value of the primal-dual algorithm
∑
e∈A

ce. By our algorithm, we can replace the costs by

tightness
∑
e∈A

ce =
∑
e∈A

∑
i : e ∈ Ti
tight

yi where in the second sum yi appears once for all e ∈ A∩Ti with corre-

sponding tight inequality. This happens at most |A∩Ti| ⩽ maxi|Ti| times, so that
∑
e∈A

ce ⩽ maxi|Ti|
∑
i∈[n]

yi

and by weak duality, we have
∑
e∈A

ce ⩽ maxi|Ti|
∑
i∈[n]

yi ⩽ maxi|Ti|.OPT where OPT is the value of the

cheapest hitting set. This means that the primal-dual algorithm is a maxi|Ti|-approximation algorithm.

The Steiner tree problem:
In the Steiner tree problem, we’re given a connected graph with positive edge weights and a set of tar-
gets/terminals τ ⊂ V . The problem consists in finding a minimum weight subgraph that connects all
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nodes from the terminal to each other. This graph must be a tree, as such a graph must also be inclusion
minimal for connectivity, because of positive weights.

To model the problem as an IP, we use the usual indicators x for the edges. If the graph connects
all the vertices of τ , then for any node set S "separating" τ in the sense that ∅ ≠ S ∩ τ ̸= τ , the cut
δ(S) must contain at least one edge (for example on a path from t1 ∈ S ∩ τ to t2 /∈ S ∩ τ). This actu-
ally characterises this property of connectivity: conversely, if all such δ(S) are non empty, we start with
S = {t1} ⊂ τ and iteratively augment S along edges of its cut δ(S) until all nodes of τ are contained in S.
The loop invariant of this miniature algorithm is that the number of nodes in S allways increases, so that
the algorithm terminates, and that the set of edges augmented along connects the nodes of S, allowing us
to obtain with the desired connectivity property for τ .

So the problem can be modeled by the IP min
∑

cexe subject to

{∑
e∈δ(S) xe ⩾ 1, ∀∅ ≠ S ∩ τ ̸= τ

xe ∈ {0, 1}
.

We can relax it to min
∑

cexe subject to

{∑
e∈δ(S) xe ⩾ 1, ∀∅ ≠ S ∩ τ ̸= τ

xe ⩾ 0
as no optimal solution has

entries greater then 1, since those could be lowered to 1 without violating constraints.

The dual of min
(
c·x : xtA ⩾ bt, x ⩾ 0

)
is max(b·x : Ax ⩽ c, x ⩾ 0), so the dual to the privious problem

is max
∑

∅≠S∩τ ̸=τ

yS subject to


∑
∅ ≠ S ∩ τ ̸= τ

e ∈ δ(S)

yS ⩽ ce, e ∈ E

y ⩾ 0

.

Ex.STPD: Find a primal-dual algorithm for the Steiner tree problem.

The prize collecting Steiner tree problem:
A telecommunication company wants to build a network on a graph. Their center is the node r, building
cables on edge e costs ce > 0 and connecting node v to r brings income πv > 0. To maximise profit is to
minimise costs, and maximise the sum of the incomes of visited nodes. By adding the constant −

∑
v∈V

πv

to the objective, we see that the last task is equivalent to minimising the sum of the incomes of nodes left
out of the network.
We models this as an IP with indicator variables xe for the edges and yv for the nodes, representing wether
the edge is used and the node is connected.
The problem is to minimise the objective

∑
e∈E

cexe +
∑
v∈V

πv(1− yv).

Ex.PCSTcons: Show that the constraints
∑

e∈δ(S)

xe ⩾ yv over all S ⊆ V \r and all v ∈ S force the graph

to have the following property: for an optimal solution, yv = 1 ⇔ r and v are connected in the graph
induced by {e : xe = 1}. Here, δ(S) is the set of edges with exactly one endpoint in a subset of vertices
S. Next, show that the graph induced by {e : xe = 1} for the optimal solution to the IP is a tree.

Rounding via primal-dual, exercise 7.6.
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12.4 TSP

We saw that the TSP is inapproximable. If we add constraints on the weights of the TSP, the situation
changes drastically, as we can then use a technique called "short-cutting".

Definition:
The metric TSP is the TSP but for positive weights satisfying the triangular inequality wuv ⩽ wus+wsv.

By remarking that if we delete an edge in a TSP tour, we obtain a tree spanning the vertices, we know
that for the optimal value OPT of a TSP tour and a MST on the associated complete weighted graph of
value τ , we have OPT ⩾ τ .

The technique of "short-cutting" is the following: if we have a circuit (edges may be repeated) that
visits all vertices, we can create a TSP cycle with smaller value then it. To build it, we consider then
order in which the vertices first appear on the circuit, an we build the TSP cycle by taking the edges in
that order. By the triangular inequality, this edge will have smaller weight then that of the walk on the
cycle connecting these two vertices. Also, this walk can’t contain any unvisited vertices, as this would
contradict the order of appearance property of our construction. So the resulting cycle visits all vertices
and has smaller total weight then the circuit.

For example in the figure below, we start with a graph on the top left and a circuit on the right. Short-
cutting results in the red cycle, which corresponds to the cycle in the complete graph on the bottom
left.

a

b

c

b

b

d

e

a b

c

d

e

a b

c

d

e

We can relate TSP cycles and spanning trees as follows: we walk around the tree so as to pass each
edge of it exactly twice and get a circuit passing all vertices this way. To see that this can be done, use
induction on the vertices by considering the circuit for the tree without a leaf, and inserting the leaf into
the circuit by tacking the edge going to it twice back and forth.
This "double tree" heuristic provides a 2-approximation algorithm by short-cutting the circuit we built.
Indeed, the circuit has weight at most 2τ ⩽ 2OPT , as the edges are take twice at most.

We can improve this approach to the Chirstofides heuristic. In it, we replace the previous circuit by
an Eulerian circuit. To get an Eulerian circuit, we need all vertices to have even degree, which isn’t
naturally provided for the spanning tree. We’ll therefore add edges to this tree in a clever way.
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We want to add edges between the odd (degree) vertices of the tree to make them even. On such edge per
pair of odd nodes would be enough, so that adding a perfect matching between odd vertices would solve
the problem. Perfect matching exist if the number of odd vertices are even in number which is the case
(due to the handshake lemma and a split on parity). We can take a minimum perfect matching of the odd

vertices, which turns out to have value less then
1

2
OPT . To see this, we’ll build a perfect matching of the

odd vertices
1

2
OPT . We’ll build it from the optimal TSP tour: we build a cycle of the odd vertices by

short-cutting the optimal TSP tour in order of appearance of the odd vertices on it. This is an even cycle
of value less then OPT . By 2-coloring its edges, each color forms a perfect matching of the odd vertices,

one of which must have value less then
1

2
OPT (for the weights are positive).

In conclusion, the Eulerian circuit on the MST joined by the minimum perfect of its odd vertices, has

value at most OPT +
1

2
OPT . So we end up with a TSP cycle of value at most

3

2
OPT by short-cutting

one last time.

Finally, we discuss the nearest/cheapest insertion heuristic, who’s analysis is also based on spanning trees.
In the nearest-insertion heuristic, we start our cycle at an arbitrary vertex v0 and at each iteration, we
start by finding a vertex vk who’s closest to the current vertices of the cycle v0, ..., vk−1 (in the sense that
it minimises min

i
(cuvi) for u ∈ V \{v0, ..., vk−1}). We then insert this vertex in our cycle in the cheapest

way possible, in the sense that we replace the edge (vivi+1) by (vivk) and (vkvi+1), so as to minimise the
net insertion cost cvivk + cvkvi+1 − cvivi+1 , and over all i ⩽ k − 1. The algorithm ends once the all vertices
are visited by the tour.
The nearest-insertion heuristic provides a 2-approximation algorithm. To see this, we must remark 2
things. First, for the sequence of edges (vivk) attaining the minimum defining vk in the kth iteration,
these edges actually constitute a minimum spanning tree of Kn as they are added in the same way as
for Prim’s/Jarnik’s algorithm. We’ve seen previously that the value of this tree τ is less then that of the
value OPT of the optimal TSP tour. So the goal is to show that our output cycle has value less then 2τ .
To this end, we have the second remark: if (vjvk) attains the minimum defining vk in the kth iteration
and if (vivi+1) is replaced as it minimises cvtvk + cvkvt+1 − cvtvt+1 , then cvivk + cvkvi+1 − cvivi+1 ⩽ 2cjk.
If we sum these inequalities, we get the final value of the output tour on the left and 2τ on the right,
showing the desired approximation property. So, to see that cvivk + cvkvi+1 − cvivi+1 ⩽ 2cjk, note that
cvivk + cvkvi+1 − cvivi+1 ⩽ cvjvk + cvkvj+1 − cvjvj+1 by definition of i, and that cvjvk + cvkvj+1 − cvjvj+1 ⩽ 2cjk
which is equivalent to cvkvj+1 ⩽ cvjvj+1 + cjk (we abused notation cjk = cvjvk), which is the triangular
inequality.
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12.5 Cuts and Metrics

Multiway cut:
In the multiway cut problem, we’re given a graph G = (V,E) with positive edge weights w and a set of
nodes S ⊆ V to separate: we look for the minimum weight set of edges F so that in (V,E\F ), there is
exactly one element of S in each connected component.
We can model this as an IP by letting these connected components play an important role: if Cs is the
component of s ∈ S, then we consider variables xv,s indicating if v ∈ Cs and ze,s indicating if e ∈ δ(Cs).
So if edge e is in the multiway cut, exactly two ze,s = 1, corresponding to the two s of the connected

components the endpoints of e are in. This way, our objective to minimise is
1

2

∑
e∈E

we

∑
s∈S

ze,s.

As for constraints, we want one component per vertex, so
∑
s∈S

xv,s = 1 for all v ∈ V , and for coher-

ence xs,s = 1. Next, we note that for edge {u, v}, |xu,s − xv,s| indicates whether both endpoints are
or aren’t both in Cs. So adding constraints z{u,v},s ⩾ xu,s − xv,s and z{u,v},s ⩾ xv,s − xu,s (equivalent
to z{u,v},s ⩾ |xu,s − xv,s|) for all edges and components forces one exactly two of the (ze,s)s∈S to be 1,
indicating that e cuts these components apart.

This LP relaxation of this IP turns out to have a beautiful geometric formulation. Since the weights
are positive and we minimise the objective, we expect the optimal solution to be tight for one of z{u,v},s ⩾
xu,s − xv,s and z{u,v},s ⩾ xv,s − xu,s (otherwise we could decrease z{u,v},s without violating any other
constraints, thereby decreasing the objective). In other words, for an optimal solution (x∗, z∗) we have
z∗{u,v},s = |x∗u,s − x∗v,s| = max(xu,s − xv,s, xv,s − xu,s). Then the optimal value can be re-written as
1

2

∑
e∈E

we

∑
s∈S

z∗e,s =
1

2

∑
{u,v}∈E

w{u,v} ∥x∗u − x∗v∥1 by considering the x∗u to be in R|S|. Then
∑
s∈S

x∗v,s = 1

means that x∗u is in the standard (|S| − 1)-simplex in R|S|, and x∗s,s = 1 means that x∗s is the s-th unit
vector of R|S|, a vertex of the standard (|S| − 1)-simplex.

How can we get an approximation algorithm from this interpretation ?
The solutions of the LP relaxation valid for the IP modeling the problem correspond to the unit vectors
ei, the vertices of the simplex, as they represent the unique choice of component to put the node into. We
can guess that if a variable xv is "close" to one of these unit vectors, then putting v in the corresponding
component should yield a good result.
There are different ideas that can come to mind when making the decision of how to interpret xv. For
example, we could triangulate the simplex along a Voronoi diagram on the vertices of the simplex and let
v be in component i if xv is in the Voronoi cell of ei. Another idea is that of computing the distance dv,i
of xv to ei and letting v be in component i with probability 1/dv,i∑

i∈S 1/dv,i
.

However, when it comes to judging the quality of an approximation algorithm, it’s often useful to be able
to easily relate it to the optimal value of the main problem. In the case where a relaxation is used, we
want to be able to easily relate it to the relaxation, as we can then relate it to the optimal value of the
main problem. This is where the distance interpretation of the objective of the relaxation comes into play:
if we use this notion of distance to decide which is the closest ei to xv, we should be able to analyse the
resulting algorithm more easily.
We could put v in component i if ∥v − ei∥1 is minimum among the ∥v − ej∥1 for j ∈ S.
But in a final step, we introduce randomisation. Instead, we’ll pick a random radius r ∈]0, 2[ and a random
order in which to traverse S, and v in component i if ∥v − ei∥1 ⩽ r, passing over the i ∈ S, putting the
unattributed v into the component of j ∈ S that comes last. The choice r ∈]0, 2[ is due to the fact that
for any two points in the simplex a and b, ∥a − b∥1 ⩽

∑
|ai − bi| ⩽

∑
|ai| + |bi| = 2 (H-description of
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the simplex
∑
xk = 1).

For such an algorithm, edge {u, v} is in the cut if there is an i ∈ S that isn’t the last to appear in
the random ordering of S so that exactly one of u or v verifies ∥xu − ei∥1 ⩽ r or ∥xv − ei∥1 ⩽ r. This
endpoint will be attributed to component i, while the other will be attributed to another. It turns out
that bounding this probability is easier then computing it.
With a union bound, we can upper-bound the probability of this occuring by

∑
i∈S

Pi, where Pi is the prob-

ability of this event for i ∈ S being the first element in the random ordering of S for which this happens.

Tree metrics and buy-at-bulk network design:
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12.6 Local Search

A local search algorithm works by creating a sequence of feasible solutions to an optimization problem
who’s objective value increases, until a stopping criterion is reached. Many algorithms we’ve seen so far
can be considered local search algorithms: for example, the simplex method moves from vertex to ver-
tex, improving the cost at each iteration, and the Ford-Fulkerson algorithm improves flow by augmenting
paths.
Local search may not terminate in a global optimum of the problem, in the sense that the algorithm may
find a solution it can’t further improve, but this solution isn’t optimal. In such cases, one hopes that the
algorithm is at least an approximation algorithm. We now study a case in which this is true.

We’ll provide a
1

2
-approximation algorithm for max-cut for edge weights in N using local search. We

start with a feasible solution for the max-cut problem, a bipartition (for example the bipartition V =
∅ ⨿ V ), and try to improve it. The idea is that we can look at nodes individually and see which par-
tition set would suit them best. If the bipartition is into V = A ⨿ V \A and a node v ∈ A satisfies∑
u∈δ(v)∩A

wuv >
∑

u∈δ(v)∩V \A

wuv, then this means that by changing v to V \A, total weight of the cut in-

creases by
∑

u∈δ(v)∩A

wuv−
∑

u∈δ(v)∩V \A

wuv > 0, as the egdes of δ(v)∩A enter the cut while those of δ(v)∩V \A

leave it.
We can repeat such improvements until all nodes v ∈ A satisfy

∑
u∈δ(v)∩A

wuv ⩽
∑

u∈δ(v)∩V \A

wuv and no

further improvement can be done. Before asking if this procedure ever terminates, we ask: is such a
bipartition an optimal one ?

1 1

5
10

5 5

10

In the above graph, all nodes yield no improvement to the cut when switching partition. Yet, if we let
the endpoints of the edge joining the triangles switch partition sets simultaneously, we improve the cut by
2(5− 1) = 8, showing that the cut wasn’t optimal.

However, an un-improvable bipartition has a value that who’s ratio to the optimal one can be bounded.
Indeed, summing

∑
u∈δ(v)∩A

wuv ⩽
∑

u∈δ(v)∩V \A

wuv over v ∈ A provides 2
∑

u∈E(A)

wuv ⩽
∑

uv∈δ(A)

wuv as each

edge of with both endpoints in A is sumed once for each endpoint and as each edge of δ(A) has one of
its endpoints v in A and the other in δ(v) ∩ V \A. This identity can push us towards finding a bound of
W =

∑
e∈E

we by a factor of the weight of the cut
∑

uv∈δ(A)

wuv, so that by positivity of weights, W upper-

bounds the maximum cut and the algorithm turns out to be an approximation algorithm.
So if we do the same for the other partition set V \A as we did for A, we obtain 2

∑
u∈E(V \A)

wuv ⩽∑
uv∈δ(V \A)

wuv. By adding the two identities together, dividing by 2 on both sides and adding
∑

uv∈δ(A)

wuv
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to both sides of the inequation, we obtain W ⩽ 2
∑

uv∈δ(A)

wuv ⇔
1

2
W ⩽

∑
uv∈δ(A)

wuv. This means that if our

improvement algorithm terminates, the bipartition it ends up with is greater then half the optimal one,

making this a
1

2
-approximation algorithm for max-cut.

We conclude by showing that the algorithm really works, so that the algorithm terminates. A strat-
egy to prove termination for local search algorithms is to show that the ever increasing value increases by
at least some minimum amount, and that it is bounded: this way, it can’t improve forever, as it would
eventually breach the bound.
Here, we improve the cut by a quantity of form

∑
u∈δ(v)∩A

wuv −
∑

u∈δ(v)∩V \A

wuv > 0. By considering integer

weights, this means
∑

u∈δ(v)∩A

wuv −
∑

u∈δ(v)∩V \A

wuv ⩾ 1 so that we increase the cut by at least 1. As the

cut is at most W =
∑
e∈E

we by positivity of weights, we make at most
W

1
=W improvements.
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12.7 Solutions

Ex.RoundMatch:
Here we round by considering M =

{
e : xe >

1

2

}
: this is indeed a matching, as at any vertex, only

one edge of M may be present, as otherwise, we’d violate a constraint because
∑

e∈δ(v)

xe > 2
1

2
= 1. A

problematic case can arise for cases such as odd cycles on which the xe have value
1

2
or complete graphs on

n vertices on which the xe have value
1

n− 1
: this may be an optimal LP solution for which this heuristic

produces an empty matching. Then |M | = 0, but non-empty matchings exist, so that it’s impossible to
obtain an approximation algorithm from this heuristic. So we must restrict ourselves to special cases, and
add the assumption that we deal with graphs for which the LP relaxation returns a solution for which M
isn’t empty.

To get a ratio, we analyse the LP solution:
∑
e∈E

xe =
∑
e∈M

xe +
∑

e∈E\M

xe ⩽ 1.|M |+ 1

2
(|E| − |M |), since the

constraints imply xe ⩽ 1.

Finally, using OPT ⩽ zLP (relaxation), we have 1 ⩽
OPT

|M |
⩽

1

2
+
|E|
|M |

⩽
1

2
+ |E|, so that

|M |
OPT

⩾

1

0, 5 + |E|
.

Ex.MaxCutLPround:
We use variable yv to indicate if v ∈ A. We want the edge {u, v} in the cut if yv + yu ∈ {0, 1, 2} has value
1. If x{u,v} indicates if {u, v} is in the cut, then x{u,v} ⩽ yv + yu prohibits {u, v} from being in the cut
when v /∈ A and u /∈ A and x{u,v} ⩽ 2 − (yv + yu) prohibits {u, v} from being in the cut when v ∈ A
and u ∈ A. If only one endpoint is in A, then these bound become x{u,v} ⩽ 1, so that x∗{u,v} = 1 for a

maximum solution to the objective
∑
e∈E

wexe, as w ⩾ 0, so that if x∗{u,v} = 1 weren’t the case, we could

increase x∗{u,v} to 1 without violating other constraints (as none involve the variable), thereby increasing
the objective and contradicting maximality.

Therefore the solutions to max
∑
e∈E

wexe st.


x{u,v} ⩽ yv + yu,∀{u, v} ∈ E
x{u,v} ⩽ 2− (yv + yu), ∀{u, v} ∈ E
x ∈ {0, 1}|E|, y ∈ {0, 1}|V |

indicate the maximum

cuts of the graph.
For optimal solutions x and y to the LP relaxation of this IP formulation, we remark that x{u,v} =
min(yv + yu, 2 − (yv + yu)), as by the constraints ⩽holds and if it were strict, we could increase x{u,v}
without violating constraints, thereby increasing the objective and contradicting maximality.
In our randomised rounding algorithm, we let v be in A with probability yv (independently of the others).
The probability of {u, v} being in the cut is then P ((v /∈ A ∩ u ∈ A) ⨿ (u /∈ A ∩ v ∈ A)) = yu(1 − yv) +
yv(1− yu).
To relate this to x{u,v} by a quality ratio r, we seek r > 0 so that yu(1−yv)+yv(1−yu) ⩾ rmin(yv+yu, 2−
(yv + yu)) as this makes the algorithm an r-approximation algorithm, as weights are positive (multiply by
w{u,v} and sum).

To find r, we look for min

(
x+ y − 2xy

min(x+ y, 2− x− y)

)
over [0, 1]2. We disjoin two cases, the first being

x+ y ⩽ 2− x− y which happens on the standard 2-simplex in the plane (x+ y ⩽ 1). Here, we minimise
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x+ y − 2xy

x+ y
who’s differential

(
−2y2

(x+ y)2
,
−2x2

(x+ y)2

)
doesn’t vanish in the interior, so that the minimum

of the function must be attained on the boundary. We know that the extremum we look for is a minimum
as the function tends to +∞ as we go to (0, 0). There are no critical points on the boundaries x = 0 and

y = 0, but there is one on the boundary y = 1 − x, at
(
1

2
,
1

2

)
where the function takes value

1

2
. The

second case can be reduced to the first by noticing that the function is symmetric wrt. y = 1 − x, as

2− (1− x)− (1− y) = x+ y and (1− x) + (1− y)− 2(1− x)(1− y) = x+ y − 2xy. So r =
1

2
does the

job, and it’s the best possible ratio for this technique.

Ex.STPD:
We use the classic primal-dual heuristic with a twist. We follow the idea develloped to show the converse
of the prolyhedral version of the connectivity property. So we start with a set T = {t1} ⊂ τ and increase
yT until one of the constraints

∑
∅ ≠ S ∩ τ ̸= τ
e ∈ δ(S)

yS ⩽ ce becomes tight, and add the (a) corresponding edge

e to the tree we’re building, adding its new endpoint to T . We repeat this step until T is connects all the
terminals, which we check by looping on ¬τ ⊂ T . The resulting graph is a tree connecting all the terminals
for the same reasons as before. Let’s investigate its weight. The weight is

∑
e∈T

ce =
∑
e∈T

∑
∅ ≠ S ∩ τ ̸= τ
e ∈ δ(S), tight

yS ,

so that we count yS at most |T ∩ δ(S)| times, implying
∑
e∈T

ce ⩽
∑

∅≠S∩τ ̸=τ

|T ∩ δ(S)|yS . By a crude bound

|T∩δ(S)| ⩽ |T | ⩽ |V |−1 and weak duality, we can conclude that
∑
e∈T

ce ⩽ (|V |−1)
∑

cexe ⩽ (|V |−1)OPT ,

so that this is an (|V | − 1)-approximation algorithm.

Ex.PCSTcons:
If yv = 1, then

∑
e∈δ(v)

xe ⩾ 1, so that v has at least one edge of the graph induced by {e : xe = 1} (we’ll

call it T ). For one such edge, we add it’s other endpoint to S = {v} and repeat for
∑

e∈δ(S)

xe ⩾ yv = 1. We

keep doing this, adding successively nodes to S that are coonet to S by an edges of T , implicitely building
a tree rooted a v, until we encounter r: this must happen, as there are only finitely many vertices, so the
worst case scenario is that S becomes V \r. There is therefore a path from v to r in T .
Conversely, if there is a path from v to r in T , for any set S with v ∈ S and r /∈ S, there must an edge
of T in the cut δ(S). Thus for all such S,

∑
e∈δ(S)

xe ⩾ 1 ⩾ yv, so that we may set yv = 1 without violating

constraints. Since the solution is minimal and yv = 1 yields smaller cost then yv = 0, yv = 1.
Finally, T must be a tree, because we know that it must contain paths to all vertices for which yv = 1
and also minimise the first part of the objective function. So it must use as little edges as possible while
staying connected: this defines trees.
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13 Computational geometry

13.1 Convex hulls
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13.2 Polyhedra

H-redundancy:
Given a polyhedron Ax ⩽ b, we’d like to know if an inequality Ai∗x ⩽ bi is redundant, in th sense that
all points verifying A[m]\ix ⩽ b[m]\i also verify Ai∗x ⩽ bi. Solving this problem is equivalent to solving an
LP, since if we know how to solve it, one can perform binary search on δ by checking for redundancy of

c·x ⩽ δ in
(
A

c

)
x ⩽

(
b

δ

)
as routine.

Conversely, we can solve this problem with an LP: maxAi∗x st. A[m]\ix ⩽ b[m]\i. If the optimum is ⩽ bi,
then line i is redundant and otherwise it isn’t. If the program is infeasible, then the line is technically
redundant, though this is meaningless as the polyhedron is empty.

H-dimension:
Given a polyhedron Ax ⩽ b, we’d like to know it’s dimension, in the sense that we’d like to know indices
of the inequalities that are always tight, as well as a point in the relative interior of the polyhedron, or a
way to tell if the polyhedron s empty.
Again, this is equivalent to solving an LP, as one can perform binary search on δ by checking for emptiness

of
(
A

c

)
x ⩽

(
b

δ

)
as routine.

Conversely, we can use LPs to solve this problem. We can solve 2 LPs per line, maxAi∗x st. Ax ⩽ b and
minAi∗x st. Ax ⩽ b: if the value coincide, then the inequality is tight for all points. The intersection of
these hyperplanes will be the affine hull of the polyhedron. For those lines I for which the the values are

different, we get points xi,max and xi,min. Then x =
∑
i∈I

1

2|I|
(xi,max + xi,min) is in the polyhedron as a

convex combination and it verifies AIx < bI , showing that it’s in the relative interior of the polyhedron
(as we’ll soon show). If the LPs are infeasible, or the max is less then the min, then the polyhedron must
be empty.

Alternative methods with different runtime exist. First, we solve max y st. Ax + y1 ⩽ b and disjoin
cases. If the optimum is y∗ > 0 (possibly infinite), then the polyhedron is full dimensional and corre-

sponding x∗ is an interior point. Indeed, Ax∗ < b and for r =
1

2
min

(
bi −Ai∗x

∗

∥At
i∗∥

)
> 0, for all v ∈ B(0, r),

we have A (x∗ + v) ⩽ Ax∗ +
(∥∥At

i∗
∥∥ ∥v∥)

i
by Cauchy-Schwartz and then A (x∗ + v) < b by our choices.

If the optimum is y∗ < 0, the the polyhedron must be empty, as the existence of an x for which Ax ⩽ b
can be extended to a solution of the LP by y = 0, contradicting maximality.

If the optimum is y∗ = 0, things get interesting. We consider the dual min
(
bts
)

st. Ats = 0, 1ts = 1 and
s ⩾ 0, which must be feasible by duality, for which complementary slackness yields interesting results.
Since s∗ ̸= 0 by 1ts∗ = 1 and s∗ ⩾ 0, the set I = {i : s∗i > 0} isn’t empty, which corresponds to the set of
lines for which Ai∗x ⩽ bi is tight, by complementary slackness for any feasible x, as any feasible x can be
extended to an optimal solution of the LP by y = 0.
We now know that the hyperplanes indexed by I , of which there is at least one, contain the affine hull
of the polyhedron. We can then reduce dimension by solving AIx = bI as Bz + x0 where B is a basis of
the kernel of AI , via Gaussian elimination. Substituting in the initial equations, we get a new polyhedron
(AB)z ⩽ (b−Ax0) in a lower dimension, since z has lower dimension then x.
We then iterate this procedure, taking at most d iterations as we reduce dimension by at least one at each
step.

V-dimension:
Given a polyhedron P with vertices V and ray generators R, how does one find the dimesnion of the
polyhedron ?
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By considering the homogenization HP of the polyhedron with ray generators
(
V R
1t 0t

)
, for which the

polyhedron is the intersection of HP with the hyperplane xd+1 = 0, considered inside that hyperplane, we
simplify the analysis. Indeed, affine independent points of P correspond to linear independent points of

HP . Therefore, the dimension of P is rank
((

V R
1t 0t

))
− 1.

V-redundancy:
Given a polyhedron P =

{
V c+Rp : c, p ⩾ 0, 1tc = 1

}
, how do we tell is a generator v ∈ V or r ∈ R is

redundant, in the sense that P =
{
(V \v)c+Rp : c, p ⩾ 0, 1tc = 1

}
for example ?

We can actually solve this problem by using H-redundancy. This is because of a connection between H-
and V-redundancy for cones. Indeed, if i is redundant for the H-cone Ax ⩽ 0, then there is no x for
which A[m]\ix ⩽ b[m]\i and Ai∗x > bi so that by Farkas’ lemma (v.2 in Ziegler) there must exist s ⩾ 0 so
that At

i∗ =
∑

j∈[m]\i

sjA
t
j∗, meaning that At

i∗ is redundant for the cone generated by At. Since the converse

direction hold, we get the equivalent.
So to find the redundant generators of P =

{
V c+Rp : c, p ⩾ 0, 1tc = 1

}
, we homogenize it (as redun-

dancy is maintained when homogenizing) and use the equivalence and the algorithm for H-redundacy. To
see that redundancy is maintained when homogenizing, assume that v = (V \v)c+Rp or r = (R\r)p, then

equivalently
(
v

1

)
=

((
V

1

)
\
(
v

1

))
c+

(
R

0

)
p since 1tc = 1 and

(
r

0

)
=

((
R

0

)
\
(
r

0

))
p. Here, we use the

fact that that a ray is redundant if it is redundant in R.

Fourier-Motzkin elimination:
Fourier-Motzkin elimination has many aspects to it. It can be used to solve the linear system feasibility
problem, thereby solving LPs, it can be used to compute the projection of a polyhedron on a coordinate-
subspace and it can be used to find the H-description of a V-cone. It also provides a constructive proof of
the Farkas Lemma.

Fourier-Motzkin elimination eliminates a variable xi in a system Ax ⩽ b as follows. We disjoin in-
dices on the signs of coefficients at i into U = {j : aji > 0}, E = {j : aji = 0} and U = {j :

aji < 0}. We can then rewrite the system as


xi +

∑
k ̸=i

ajk
|aji|xk ⩽ bj

|aji| , j ∈ U
−xi +

∑
k ̸=i

ajk
|aji|xk ⩽ bj

|aji| , j ∈ L∑
k ̸=i ajkxk ⩽ bj , j ∈ E

or alternatively


xi ⩽

bj
|aji| −

∑
k ̸=i

ajk
|aji|xk, j ∈ U

xi ⩾
∑

k ̸=i
ajk
|aji|xk −

bj
|aji| , j ∈ L∑

k ̸=i ajkxk ⩽ bj , j ∈ E
. If this system has a solution, that is if we can find actual x such

that this holds, then in particular for all pairs j ∈ U and j′ ∈ L,
∑
k ̸=i

ajk
|aji|

xk −
bj
|aji|

⩾
bj′

|aj′i|
−
∑
k ̸=i

aj′k
|aj′i|

xk.

If we consider this as a system over variables [n]\i, then we get a total of |L| × |U |+ |E| inequalities. We
can then investigate the converse: if this new system has a solution, can we extend it to the a solution of
the previous system ?

If the previous system has a solution, then for it max
j∈L

∑
k ̸=i

ajk
|aji|

xk −
bj
|aji|

 ⩽ min
j∈U

 bj
|aji|

−
∑
k ̸=i

ajk
|aji|

xk

,

so if we choose xi in the

max
j∈L

∑
k ̸=i

ajk
|aji|

xk −
bj
|aji|

 ,min
j∈U

 bj
|aji|

−
∑
k ̸=i

ajk
|aji|

xk

 non-empty interval,
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then we recover a solution to the previous system (in the cases that U or L are empty, think of it as
max = −∞ and min = +∞).

Fourier-Motzkin elimination of i corresponds to projecting a polyhedron on the space xi = 0, in the
sense that given an H-description of the polyhedron, the system we derived during elimination of variable
i is an H-description of the x[n]\i such that there exists an xi for which x is in the initial polyhedron. We
get in particular the the projection of an H-polyhedron is still an H-polyhedron.
Fourier-Motzkin can be used to solve the LP-feasibility by eliminating all variables one after the other. In
the final step, after eliminating x1, ..., xn−1, we get a system with equations of type xn ⩽ b′i or xn ⩾ b′i which
has a solution if the lower bounds are lower then the upper bounds. This is a priori not efficient methods,
since at each step, the new system has |L|× |U |+ |E| inequalities. If the initial number of inequalities was

m, then since |L| × |U |+ |E| = |U |((m− |E|)− |U |) + |E| ⩽ (m− |E|)2

4
+ |E| ⩽ max

(
m,

m2

4

)
, we have

a squared number of inequalities in the worst case. So after n eliminations starting with m equations, we

get
m(2n)

4(2n+1)
(since the powers of 4 grow as gk+1 = 2gk + 1, so gk = 1 + 2k) in the worst case (a priori).

Finally, Fourier-Motzkin can be used to get the H-description of a V-cone with the following trick. We

can write C = {Bs|s ⩾ 0} as C = {x : x = Bs, s ⩾ 0} which is C =

{
x :

{
x ⩾ Bs

x ⩽ Bs
, s ⩾ 0

}
in

H-description. This isn’t an H-description of C as we’re not in the dimension of x. However, we can now
use Fourier-Motzkin to eliminate the si successively. The system we obtain after these eliminations is
one for x only and has form Ax ⩽ 0, since at all elimination stages b = 0. If it has a solution, then by
backtracking Fourier-Motzkin (successive extensions), we can find an (or multiple) s that produce it in
the V-cone.

Farkas Lemmas:

Cone Frakas Lemma:

For a V-cone BRd
+ and a vector b, either b ∈ BRd

+ or he can separate b from BRd
+ by a vectorial

hyperplanes, so that htb < 0 and htBRd
+ ⩾ 0.

We can solve LP-feasibility problem b = Bs and s ⩾ 0 for the first problem and LP minhtb st. htB ⩾ 0
for the second (as conic combinations won’t affect dot-product signs).

We can also give constructive proof with Fourier-Motzkin. Since

{
b = Bs

s ⩾ 0
⇔


b ⩾ Bs

b ⩽ Bs

s ⩾ 0

, we can treat

b like a variable and eliminate s in the last H-polyhedron to get a system Ab ⩽ 0, which has a solution
precisely when the previous system does, that is when b ∈ BRd

+. So when this isn’t the case Ab ⩽ 0 must
be infeasible, so that there is a line with Ai∗b > 0, and we can set ht = −Ai∗.

Standard Frakas Lemma:

A polyhedron in standard form Ax = b, x ⩾ 0 is either non-empty, or we can find a contradic-
tory combination of its defining equations in the form of λtA ⩾ 0 and λtb < 0 for some λ.
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Proof: This is just the cone version said differently: for a fixed b, b is in the cone when the system
b = Atλ, λ ⩾ 0 has a solution for λ, and the separating hyperplane, when expressions are transposed,
provides Ath ⩽ 0 and bth > 0.

Polyhedron Frakas Lemma:

An H-polyhedron Ax ⩽ b is either non-empty, or we can find a contradictory combination of its
defining equations in the form of λtA = 0 and λtb < 0 for some λ ⩾ 0.

Proof: It’s equivalent to the standard-Farkas, useing the transforms of standardisation. Indeed, if Ax ⩽ b

has a solution, then we can split it along signs and add slack so as to get a solution (A,−A, I)

x+x−
s

 = b

with

x+x−
s

 ⩾ 0, and vice-versa by forgetting slack and x = x+ − x−. By the standard-Farkas, the last

existance equivalent to the non-existance of c such that ct(A,−A, I) ⩾ 0 and ctb < 0. To conclude, we
note that ct(A,−A, I) ⩾ 0 is equivalent to ±ctA ⩾ 0, so ctA = 0 and c ⩾ 0, which are the conditions from
the polyhedron-Farkas.

Computing the V-desciption of an H-cone:
We start from the following remark, which provides an V-description of a certain type of H-cones. They
are of form Ax ⩽ y and arise in LP-feasibility for cones (phase 1 of the simple algorithm), and de-
composing x into any basis bi of Rd yields feasible points xi(bi, Abi), to generate the y, we add the
(yi − (Ax)i)(0, ei), which is a conic combination as Ax ⩽ y (where ei is in the dimensions of y), so that
(x, y) =

∑
xi(bi, Abi)+

∑
(yi− (Ax)i)(0, ei). We therefore get a set of generators made of the ±(bi, Abi)

and (0, ei).
Next, the H-cone Ax ⩽ 0 is the intersection of Ax ⩽ y with the subspace y = 0, aka the intersection with
the subspaces yi = 0 for all i ∈ [m]. The key point is that for a V-cone, we can compute the generators
of it’s intersection with a coordinate subspace. So we can do this for the V-descrption of Ax ⩽ y we just
established, and proceed successively to find the V-descriptions of intersection with the yi = 0, until we
have a V-description of Ax ⩽ 0.

The idea of this intermediate step is that to get the extremal rays of the cone on the subspace, we
need to look for conic combinations of extremal ray on either side of the subspace:

In the figure, the intersection of this truncated cone with the hyperplane is shown in dotted lines. The
edges of the intersection are conic combinations of those of the cone.
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We therefore divide generators gi according to U = {j : gij > 0}, E = {j : gij = 0} and L = {j : gij < 0},
if we seek the intersection with xi = 0. If i ∈ U and k ∈ L, then gjigk + (−gjk)gj is a conic combination
who’s jth coordinate is 0, as desired. The question is if any conic combination of gi for which the jth
coordinate is 0 can be written as a conic combination of gjigk + (−gjk)gj for all pairs i ∈ U and k ∈ L
and of gi for i ∈ E, since this would give us a generating set of the intersection of the cone with the subspace.

So if x =
∑
i

sigi is such a combination, then we split x =
∑
U

sigi +
∑
E

sigi +
∑
L

skgk and note the

requirement that
∑
U

sigij +
∑
L

skgkj = 0. This rephrases to
∑
U

sigij =
∑
L

sk(−gkj) > 0, a quan-

tity we’ll call W . To introduce the pairings, we express
1

W
Wx by "crossing" the sets U and L, so

that x =
1

W

∑
U

(∑
L

sk(−gkj)

)
sigi +

∑
E

sigi +
1

W

∑
L

(∑
U

sigij

)
skgk. We group expressions to get

x =
∑

i∈U,k∈L

sisk
W

(gjigk + (−gkj)gi) +
∑
E

sigi. This is a conic combination of the vectors we expected to

generate the intersection of the cone and the subspace !

Note that we get |U | × |L|+ |E| generators for |U |+ |L|+ |E| ones at each intersection, so that there may
be an exponential number of generators at the end of the process.

Double description methods:
The double description methods are essentially more efficient methods for the task of the previous para-
graph.

We note that the task of finding the V-description of an H-cone allows to do the reverse and the same for
polyhedra. For the reverse, we perform the main direction for the duals, and use the explicit formulas for
duals, which switch between V-/H-description. For polyhedra, we use homogenization and scaling.

The standard double description method assumes that we deal with a H-cone Ax ⩽ 0 that is pointed
and irredundant. We can reduce the problem for arbitrary H-cones to this case. First, we compute a basis
(bi) ≈ B of the lineality space Ax = 0, which we complete to an basis of all of the space with (qi) ≈ Q,
which are orthogonal to the lineality space (find a base of Btq = 0). The intersection of the cone with the
orthogonal to the lineality space is a pointed cone described by A(Qy) ⩽ 0: it’s pointed since if it contained
a line, that line would also be one of the main cone, hence it would be in the lineality space, and can’t be
in its orthogonal complement. We can remove redudancies of this cone by the method described at the
start of this chapter. We can then use the standard double description method to get V-descrption R for
(AQ)y ⩽ 0. Then QR generates the cone that is the intersection of the main cone with the orthogonal to
the lineality space. All that we have left to do now is to find generators of the lineality space, since any
point of the cone is the sum of it’s projection on the lineality spaces orthogonal and some vector of the
lineality space. It turns out that the (bi) and b′ = −

∑
bi (non-zero as B is linearly independent) generate

the lineality space as a cone, and are in minimum number for this property. Indeed, since B is a basis, the
elements of the lineality space can be written as x =

∑
sibi, which, if it isn’t a conic combination already

(if min
j

(sj) ⩾ 0), can be written as x =
∑

(si − min
j

(sj))bi + |min
j

(sj)|b′, which is a conic combination

(if min
j

(sj) < 0). We can even show that this number of generators is minimum. If the dimension of the

lineality space is l, then l + 1 generators at least are necessary: for less then l, the lineality space isn’t
spanned, and for l exactly, for generators g1, ..., gl, we can consider the hyperplane spanned by g1, ..., gl−1

and a point orthogonal to it, on the other side of it then gl, which can’t be generated as its component
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along gl would have to be negative.

The standard double description method is iterative and maintains a pair of matrices (A,R) such that the
H-cone Ax ⩽ 0 and the V-cone cone(R) coincide. We start with a pair

(
Ai∗, R

(1)
)

and at each step, for

a subset K ⊆ [m] and i ∈ [m]\K, starting from
(
AK∗, R

(k)
)
, we build

(
A(K ∪i)∗, R

(k+1)
)
, until K = [m].

Initially, for
(
Ai∗, R

(1)
)
, since Ai∗ ̸= 0, we can take for R(1) the generators of the space Ai∗x = 0 (as

described for the lineality space), together with −Ai∗. In the step, we perform a method similar to the
one developed in the previous section.

For
(
AK∗, R

(k)
)

and i ∈ [m]\K, the generators r of R(k) fall into three categories: those R(k)
+ for which

Ai∗r > 0, those R(k)
0 for which Ai∗r = 0 and those R(k)

− for which Ai∗r < 0. Only the latter two are in
the final cone, as the first violate Ai∗x ⩽ 0. We again consider the intersections of segments spanned by
generators on either side of Ai∗x = 0 and show that they generate A(K ∪i)∗x ⩽ 0. Similarly to the previous
section, the intersections are rjh = (Ai∗rj)rh−(Ai∗rh)rj , for rj ∈ R(k)

+ and rh ∈ R
(k)
− . They are in the cone

generated by R(k) as conic combinations and satisfy Ai∗x = 0, so that by the recursion hypothesis, they
are in A(K ∪i)∗x ⩽ 0, and so are their conic combinations. To see that they actually generate the cone,
together with the generators of R(k)

− and R
(k)
0 , we consider a point x in the cone A(K ∪i)∗x ⩽ 0, which is

also in the cone AK ∗x ⩽ 0, and has expression x =
∑

λtrt there, for rt ∈ R(k) and λ ⩾ 0. If no generator

of R(k)
+ , we are done. Otherwise, we will rewrite this expression to see that its in the cone of R(k+1). Since

Ai∗x ⩽ 0 and one generator rj of R(k)
+ is present, there must also be one rh ∈ R

(k)
− (otherwise Ai∗x > 0 ).

In fact, there must be rj ∈ R(k)
+ and rh ∈ R

(k)
− such that λh(Ai∗rh)+λj(Ai∗rj) ⩽ 0, for otherwise, we’d get∑

rh∈R
(k)
−

λh(Ai∗rh)+ |R
(k)
− |λj(Ai∗rj) > 0 and by considering this for the rj for which λj(Ai∗rj) is minimum,

we’d get a bound Ai∗x = Ai∗
∑

λtrt > 0, contradicting that x is in the cone.

For such j and h, by adding x+
λj

(Ai∗rh)
rjh =

(∑
λtrt

)
+

(
λj

(Ai∗rh)
(Ai∗rj)rh − λjrj

)
and noting that the

right side doesn’t contain rj anymore, and is still an conic combination of R(k) as λh+
λj

(Ai∗rh)
(Ai∗rj) ⩾ 0

(as (Ai∗rh) < 0), while the left side is a point of A(K ∪i)∗y ⩽ 0, we can do this iteratively until the right
side contains no more generators of R(k)

+ . The left side will then by x +
∑

µtrt for µ < 0 and rt of the

form rjh = (Ai∗rj)rh − (Ai∗rh)rj ., so that by bringing
∑

µtrt to the right, we get a conic combination of

R(k+1). This concludes the proof that
(
A(K ∪i)∗, R

(k+1)
)

is a DD-pair.

At this stage, the number of generators increases by |R(k)
+ ||R

(k)
− | − |R

(k)
+ | at each iteration, which may

lead to a much to large number of generators. We can improve this with some geometry, by noticing that
most new generators we created are unnecessary, and only the "boundary" ones matter.
So instead of considering all pair of R(k)

+ and R(k)
− , intuition suggests that looking at the adjacent ones is

enough. In fact, intuition suggests that these pairs form extreme rays of the cone of the next iteration,
and that together with the extreme rays in R(k)

− and R(k)
0 we have all the extreme rays of the new cone.

Indeed, if ri ∈ R
(k)
+ and rj ∈ R

(k)
− are adjacent extreme rays of the cone generated by R(k), then they

are in a common 2-dimensional face of the cone, which they generate. The intersection point from the
construction of the previous paragraphs will be in that face as a conic combination, and also in the new
halfspace Ai∗x ⩽ 0 considered for iteration k to k + 1. Now Ai∗x = 0 can’t be parallel (contain) to the
face of dimension 2 the adjacent extreme rays are in, as these rays take non-zero value for Ai∗r. Thus, the
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intersection of the face of dimension 2 and Ai∗x = 0 is a one dimensional space of the cone, containing
rij , which is therefore an extreme ray.
We will now show that all extreme rays of R(k+1) have been considered in this process. If r is such an
extreme ray, then either it belonged to R

(k)
− or R(k)

0 , or it didn’t, in which case it must be on Ai∗x = 0.
So i ∈ eq(r) and rank(Aeq(r)∗) = d− 1, and therefore rank(Aeq(r)\i∗) = d− 2: this means that r was on a
2-dimensional face of the cone of iteration k, generated by R(k). This face had 2 extreme rays generating
it, each on a different of the sides of Ai∗x = 0, as otherwise r couldn’t be on it, extreme rays that would
have been adjacent. So r is a multiple of some rij , and hence all extreme rays are considered.

So if we start the DD-method with
(
AK1∗, R

(1)
)

where R(1) is made of the extreme rays of the cone

precisely, then our the described procedure will maintain the property that the R(k) are made precisely of
the extreme rays of the corresponding cone, in particular the last iteration, for the actual cone of interest.
Two problems have to be addressed: first, how do we get the initial

(
AK1∗, R

(1)
)
, and second, how do

we test for adjacency ?
The first problem can be handled by choosing AK1∗ so as to have full rank d (find it’s echelon form).
Note that the rank must be d as we assume the cone to be pointed. Then we can use the equivalence
λ = AK1∗(−x) ⩾ 0 ⇔ x = A−1

K1∗λ, λ ⩾ 0 to see that the cone AK1∗x ⩽ 0 is generated by the columns of
A−1

K1∗, which form extreme rays as AK1∗A
−1
K1∗ = 1 shows that the eq set of the columns of A−1

K1∗ are of size
d− 1.
The second can be handled with brute force: we can test if A(eq(ri)∩eq(rj))∗x = 0 has dimension 2 for all

pairs ri ∈ R(k)
+ and rj ∈ R(k)

− .

Polyhedron intersection and separation:
We ask how to tell if to polyhedran in H-description intersect, and how to find a separating hyperplane
given by the convex separation theorems if they’re disjoint.
We’ll find two methods for the first question, and show that the second one can’t help us answering the
second on efficiently. For the first problem, we’re dealing with a feasibility LP by solving Ax ⩽ b and
Cx ⩽ d simultaneously.
The separation problem can be solved if one finds a pair of points minimising the Euclidean distance for
the polyhedra. We can find the minimum distance for the maximum norm as follows. For polyhedra

Ax ⩽ b and Cx ⩽ d, we can solve min δ st.


Ax ⩽ b

Cy ⩽ d

xi − yi ⩽ δ

yi − xi ⩽ δ

. This problem is feasible precisely when the

polyhedra are non empty (then for a feasible point on can set δ = ∥x − y∥∞) and it’s always bounded,

as |xi − yi| ⩽ δ ⇔

{
xi − yi ⩽ δ

yi − xi ⩽ δ
can thus 0 ⩽ δ. At minimum, δ is the distance of the closets pair x

and y of the two polyhedra, for ∥.∥∞: this is because |xi − yi| ⩽ δ for all i, therefore ∥x − y∥∞ ⩽ δ and
we’d contradict minimality if ∥x−y∥∞ < δ, as we can then decrease δ without violating other constraints.
Thus we’re actually minimising ∥x− y∥∞ over pairs of points in the two polyhedra.

The optimum is δ = 0 precisely if the polyhedra intersect, for if they do, 0 ⩽ min δ ⩽ ∥x− x∥∞ = 0 as x
is a point of both polyhedra (set y = x), and if δ = 0, then for the associated x and y of the polyhedra,
0 ⩽ ∥x− y∥∞ ⩽ δ = 0 thus x = y and that point is in both polyhedra, which intersect.

Unfortunately, the pair of points minimising the ∥.∥∞ norm may not be that minimising the ∥.∥2, which has
drastic consequences for separation. Consider the polyhedras {0} and (1, 1)+

{
z :
(
cos(θ), sin(θ)tz ⩾ 0

)}
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for parameter θ ∈]0, π/4]. The minimum ∥.∥∞ distance is always achieved by 0 and (1, 1) only, as for all
other points of the second polyhedron (for z ̸= 0), since one of 1 + z1 and 1 + z2 must be strictly greater
then 1, for of z1 cos(θ) or z2 sin(θ) must be strictly positive. Yet, as θ approaches 0, any hyperplane normal

to (1, 1) won’t separate the polyhedra, as the point (1, 1) +

(
1,−cos(θ)

sin(θ)

)
will be on the origins side. SO

one can not hope to mimic the separation proof for the Euclidean norm.

ADD: separation of polyhedra by homogenizing, separating cone generators (watch out for case of shared
generators in the recession cone, ex.: two parallel rays have each two generators, one being shared), then
intersect with z=1 to get separation of polyhedra.

Separating a point from a V-polyhedron:
We can use V-homogenization and cone-Farkas to solve the problem constructively, since cone-Farkas is.

Indeed, for a point x in tha polyhedron,
(
x

1

)
can be written as a conic combination of

(
V R
1t 0

)
. If it isn’t

in the polyhedron, cone-Farkas provides h such that ht
(
V R
1t 0

)
⩾ 0 and ht

(
x

1

)
< 0. This rewrites to

ht[d]V ⩾ −hd+1, ht[d]R ⩾ 0 and ht[d]x < −hd+1 which describe a hyperplane directed by h[d] that separates
the point from the polyhedra, as any convec and conic combination y of V and R will satisfy ht[d]y ⩾ −hd+1,
due to ht[d]V ⩾ −hd+1, ht[d]R ⩾ 0 and positivity of combinations.

Pivoting algorithm for V-representations:

For a polyhedron P of form

{
Ax = b

x ⩾ 0
, we can use the techniques of the simplex method to find all

vertices and rays in a DFS manner. We start with a phase 1 simplex algorithm to determine a vertex
of P , or more precisely a feasible basis of it. We then perform DFS on the graph of the polyhedron. At
each step, we consider a feasible basis in the frontier at perform all possible pivots for it (whereas in the
simplex algorithm, we only pivoted on variables with negative reduced cost, which doesn’t exist in this
context): if the pivot leads to a ray, we create a neighbour node indicating that we’ve encountered a ray,
that we consider explored by default; if the pivot leads to a basis we do nothing ; if the pivot leads to a
new basis, we add that basis to the frontier. When all possible (n −m) pivots have been performed, we
mark the basis as explored. We stop when the frontier is empty.
We remark that degeneracy is no problem here: pivot rules indicate that there must be at least one pivot
leading to a different vertex, if one exists. For if v is a vertex and w a different one, objective c = w− v is
strictly larger for w then it is for v, so that a pivot rule on the simplex method with this objective would
imply that we eventually find a pivot that leaves for a new vertex.

We now explore the idea of putting a polyhedron Ax ⩽ b in standard form and seeking a relation
between the vertices of the standard form an those of Ax ⩽ b. Once we’ve found the vertices and

rays of

{
Ax+ −Ax− + s = b

x+, x−, s ⩾ 0
, note that we can get the point of Ax ⩽ b by applying the linear map(

x+, x−, s
)
7→ x+ − x−. Since convex and conic combinations are preserved under linear maps), we see

that the images of the vertices and rays of the standard form generate a V-representation of Ax ⩽ b. But
not all images need to be vertices or rays themselves: consider projecting an Egyptian pyramid on its base,
so that the top vertex of the pyramid becomes an interior point, but the 4 base vertices are the vertices
of the projection. We therefore have to check which of them truly are vertices or rays, which we can do
with the H-characterisations of vertices and rays. For example for images of vertices, we check if they’re
vertices if the tight inequalities on them form linear independent rows of A.
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Integer hulls:
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13.3 Triangulations
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13.4 Protein folding on lattices

HP lattice model and Newmans Algo (LatticeProtein...)
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13.5 Distance geometry, graph embedding, rigidity

"Euclidean dist geo" chap 3 and 4
"Combinatorial rigidity" and other books and papers
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13.6 Knots

"NP–HARD PROBLEMS NATURALLY ARISING IN KNOT THEORY" DALE KOENIG AND ANAS-
TASIIA TSVIETKOVA
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13.7 Solutions
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14 Probabilistic methods and derandomization

14.1 Local search with random walks
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14.2 Second moment method

We consider the following problem: a class of m students is visiting a city, and each student s has a set
Fs of attractions/sites, which is a subset of n possible attractions/sites X, that they want to see. The
goal is to split the attractions/sites in two disjoint groups A and B that are subsets of X, such that for
each student, at least one of Fs ∩ A or Fs ∩ B is empty, and we can therefore split the students into two
groups, according to what they want to see. We call (A,B) a separator (which exist, for there always is
(∅, X) that counts) and say that its size is min(|A|, |B|), an our goal is have a large and similar amount of
attractions to see for both groups, in the sense that we seek the separator of largest size ((∅, X) has size 0).

We investigate the following strategy: we split the students into two groups independently and uniformly
at random and take A to be the attractions/sites for which the students desiring to visit them are all in
the first group, and B to be the attractions/sites for which the students desiring to visit them are all in the
second group. We assume that all attractions/sites are desired by at least one student (otherwise, there’s
not point considering it). They will form a separator, as they’re disjoint, as each student is in one group
only, and attractions that are desired by no students, that hence conventionally satisfy the definitions of
A and B, don’t exist. We also introduce the parameter r that bounds the number of attractions/sites
students want to visit in the sense |Fs| ⩽ r. What can we say about the size of the separator ?

For an attraction x, we denote by Zx the random variable indicating x ∈ A, so that if dx students

desire x, then P (Zx = 1) =
1

2dx
, the probability that all of them are in the first group of students, so that

x ∈ A. The size of A is the random variable Z =
∑
x∈X

Zx. If Y is the size of B, then our goal is to determine

P (min(|A|, |B|) ⩾ k) = P (Z ⩾ k ∩ Y ⩾ k) = 1 − P ((Z < k ∪ Y < k) ⩾ 1 − (P (Z < k) + P (Y < k)),
so our goal is to upper bound P (Z < k), which works well with the Chebyshev inequality, to get a lower
bound on the probability that the size of the separator is at least k.

We can state the Chebyshev inequality as P (Z < (1 − δ)E(Z)) <
V ar(Z)

δ2E(Z)2
, where we can bound

E(Z) =
∑
x∈X

E(Zx) =
∑
x∈X

1

2dx
⩾ n

1

2
1
n

∑
x∈X dx

=
n

2d
with the arithmetic-geometric mean, letting the

average number of students desiring d =
1

n

∑
x∈X

dx appear, so that P
(
Z < (1− δ) n

2d

)
<

V ar(Z)

δ2E(Z)2
and

P
(
Z < (1− δ) n

2d

)
<
V ar(Z)2d

δ2E(Z)n
(we keep one expectation for future purposes).

To bound the variance, we distribute V ar(Z) =
∑
x∈X

V ar(Zx) +
∑

x ̸=y∈X
Cov(Zx, Zy). First, we have

V ar(Zx) = E
(
Z2
x

)
− E(Zx)

2 = E(Zx) − E(Zx)
2 ⩽ E(Zx) as this is an indicator variable (0-1-valued

and positive), so
∑
x∈X

V ar(Zx) ⩽ E(Z). Next, we note that if for x and y, no students exist that want to

visit both, then Zx, Zy are independent, and then Cov(Zx, Zy) = 0. The pairs of attractions for which
this is not the case can be bounded by (r− 1)

∑
x∈X

dx, as for each x, there are at most (r− 1) other attrac-

tions each student wanting to visit x also wants to visit. With Cov(Zx, Zy) = E(ZxZy)−E(Zx)E(Zy) ⩽

E(ZxZy) ⩽ E(Zx) =
1

2dx
(they are indicator variables), we get

∑
x ̸=y∈X

Cov(Zx, Zy) ⩽ (r − 1)
∑
x∈X

dx
1

2dx
.

To let E(Z) appear in the previous bound we use the inequality n
∑
i∈[n]

aibi ⩽

∑
i∈[n]

ai

∑
i∈[n]

bi

 for se-

quences on positive numbers where a is non-increasing and b non-decreasing. This inequality can be shown

213



with 0 ⩾
∑

i>j∈[n]

(ai−aj)(bi−bj) =
∑

i>j∈[n]

aibi+ajbj−aibj−ajbi = (n−1)
∑
i∈[n]

aibi−
∑

i ̸=j∈[n]

aibj = n
∑
i∈[n]

aibi−

∑
i,j∈[n]

aibj . It then follows that
∑

x ̸=y∈X
Cov(Zx, Zy) ⩽

(r − 1)

n

(∑
x∈X

dx

)(∑
x∈X

1

2dx

)
= (r − 1)dE(Z).

Finally, we get V ar(Z) ⩽ ((r−1)d+1)E(Z) ⩽ rdE(Z) by combining bounds and noting that d ⩾ 1 as all

dx ⩾ 1 by assumption. Hence P
(
Z < (1− δ) n

2d

)
⩽
V ar(Z)2d

δ2E(Z)n
⩽
rd2d

δ2n
and P

(
min(|A|, |B|) ⩾ (1− δ) n

2d

)
>

1− 2
rd2d

δ2n
, since we can do the same for B, or more precisely Y .

For a large number of sites and a small average desirability, so that
rd2d+1

n
<

1

4
for example, then with

δ =

√
rd2d+1

n
∈ [0, 1] for some q ∈]0, 1[, we get P

(
min(|A|, |B|) ⩾ n

2d+1
> 4rd

)
> 0. So we can get a

separator of size at least
n

2d+1
> 4rd with small but non-zero probability from this procedure.
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14.3 Basics of derandomization

We mentioned an approximation algorithm for max-exact-q-SAT that for m clauses we can expect to find

an assignment satisfying at least m
(
1− 1

2k

)
clauses. The outputed assignment was set by choosing the

truth assignment for each variable independently and at random.

Method of conditional probabilities:
We now investigate a technique that "derandomizes" certain randomised algorithms.
The idea of using conditional probabilities to derandomise the algorithm for q-SAT is that it’s fairly easy
to computed conditioned expectations for this problem, and that these conditioned expectations can serve
as a search heuristic when branching on the truth assignments of variables.
If the variables are x1, .., xn and we use a branching procedure that helped us set the values of x1, ..., xk,
then we can set xk+1 by comparing E(C|x1 = s1, ..., xk = sk, xk+1 = true) and E(C|x1 = s1, ..., xk =
sk, x1 = false), where C is the number of satisfied clauses and the si are the set assignments of the
x1, ..., xk. We should choose the truth assignment for which the expectation is biggest to get as many
satisfied clauses as possible.
The immediate question is how to compute expectations of form E(C|x1 = s1, ..., xk = sk). If we’ve kept
track of the clauses satisfied for x1 = s1, ..., xk−1 = sk−1, then we can check the remaining clauses on
whether they contain xk or not. If they don’t, the probability that they are satisfied, conditioned on

x1 = s1, ..., xk = sk is
(
1− 1

2k

)
, by independence. If they do then either xk = sk satisfies the clause, or

x1 = s1, ..., xk = sk isn’t enough to satisfy the clause, a number between q−k and q−1 unsettled variables
could still satisfy it in future iterations. In the first case, the clause contributes with 1 to the conditional
expectation, in the second, we have to count the number u of unsettled variables in the clause, and con-

tribute
(
1− 1

2u

)
to the expectation, again by independence. So computing the conditional expectation

requires at most O(mn) counts (for m clauses).

At each step, one per variable, we compute two conditional expectations and compare them, keeping
the assignment for which the expectation was maximum. So the algorithm runs in O

(
mn2

)
. In the last

step, we compute E(C|x1 = s1, ..., xn = true) and E(C|x1 = s1, ..., xn = false), which corresponds to the
actual (not just expected) number of satisfied clauses for these assignments. The question is how high the
number of satisfied clauses is at termination.
Here, we use the following to formalise our intuition: if P (Ci|x1 = s1, ..., xk−1 = sk−1) is the probability of
satisfying clause i knowing x1 = s1, ..., xk−1 = sk−1, then P (Ci|x1 = s1, ..., xk−1 = sk−1) = P (Ci ∩ (xk =
true)|x1 = s1, ..., xk−1 = sk−1)+P (Ci∩(xk = flase)|x1 = s1, ..., xk−1 = sk−1). Then, using the law P (A∩
B|C) = P (A|B ∩C)P (B|C), and having P (xk = sk|x1 = s1, ..., xk−1 = sk−1) =

1

2
by definition (indepen-

dence), we get P (Ci|x1 = s1, ..., xk−1 = sk−1) =
P (Ci|x1 = s1, ..., xk = true) + P (Ci|x1 = s1, ..., xk = false)

2
.

Therefore, we also haveE(C|x1 = s1, ..., xk−1 = sk−1) =
E(C|x1 = s1, ..., xk = true) + E(C|x1 = s1, ..., xk = false)

2
by linearity.
In particular E(C|x1 = s1, ..., xk−1 = sk−1) ⩽ max(E(C|x1 = s1, ..., xk = true), E(C|x1 = s1, ..., xk =
false)). This means that the conditional expectations for the assignment we successively construct are

increasing at each step ! Since E(C) ⩾ m

(
1− 1

2k

)
initially, we will have E(C|x1 = s1, ..., xn = sn) ⩾

m

(
1− 1

2k

)
at termination, so that this forms a

(
1− 1

2k

)
approximation algorithm.

ADD: derandomisation of maximum edge bipartite subgraph via conditional proba derandomisation as
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216



14.4 The local lemma and its applications

When attempting to find an approximation algorithm for exact-k-SAT by choosing the value of each
variable uniformly at random we’re faced with the following probabilistic problem. For concreteness,
assume we have m clauses on n variables. We can easily compute the probability that clause i isn’t

satisfied, an event denoted by Ai, as P (Ai) =
1

2k
, since for the clause to be false, all its k (exactly) literals

have to be, which happens with probability
1

2k
, due to independence.

The problem is that of computing P
(
A1 ∩ ... ∩Am

)
, the probability that all clauses are satisfied, since we

have a priori no information on the dependence of the Ai. If we can establish that P
(
A1 ∩ ... ∩Am

)
> 0,

we’ve shown that the instance is satisfiable by the probabilistic method.
This is where the local lemma comes into play:

Erdös-Lovasz-Spencer local lemma:

For events Ai, we consider their dependecy graph G in which Ai and Aj are adjacent if they’re
dependent, in the sense that theyre not adjacent if they’re in a maximum set of mutually independent
events.
If 4max

i
(degG(Ai))max

i
(P (Ai)) ⩽ 1, then P

(
A1 ∩ ... ∩Am

)
> 0.

Alternatively, if one can find xi ∈ [0, 1) so that P (Ai) ⩽ xi
∏

j∈δG(Ai)

(1− xj),

then P
(
A1 ∩ ... ∩Am

)
>
∏
j∈[m]

(1− xj) > 0.

If we have 4max
i

(degG(Ai))max
i

(P (Ai)) ⩽ 1 and the dependency graph has no isolated vertices, then

we can find the xi from the second part explicitly. To get this, we write p = max
i

(P (Ai)) and d =

min
i
(degG(Ai)). Note that 4pd ⩽ 1 as d ⩽ max

i
(degG(Ai)). Setting all xj =

1

d+ 1
∈ [0, 1), we

get xi
∏

j∈δG(Ai)

(1 − xj) ⩾
1

d+ 1

(
1− 1

d+ 1

)d

. We can bound this further with the exponential to

1

d+ 1

(
1− 1

d+ 1

)d

⩾
1

e(d+ 1)
. Now, with 4dp ⩽ 1, we get ep(d+1) ⩽

e

4
+ep ⩽ (e+1)p ⩽ 4p ⩽ 4pd ⩽ 1

so that
1

e(d+ 1)
⩾ p = max

i
(P (Ai)).

For exact-k-SAT, this yields the following result:

Exact-k-SAT:

If for each clause there is another that shares at least one variable, and any two clauses share at
most 2k−2 variables, then there is a satisfying assignment for the instance.

Indeed, the first condition, implies that d ⩾ 1 and the second one that max
i

(degG(Ai)) ⩽ 2k−2. Since

max
i

(P (Ai)) = 2 −k, we get 4max
i

(degG(Ai))max
i

(P (Ai)) = 1 ⩽ 1 and the local lemma applies, so that
we can conclude with the probabilistic method.

Proof of the local lemma:
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Venkatesh’s treatment is better then ours.
We prove this by induction on m, by proving P

(
A1|A2, ..., Am

)
⩽ 2p and P

(
A1|A2, ..., Am

)
⩽ x1 by

induction (we prove both results in parallel).
The last step is obtained by repeatedly applying the law P (C|A,B)P (B|A)P (A) = P (A ∩B ∩ C) to get

P
(
A1 ∩ ... ∩Am

)
=

m∏
j=1

P
(
Ai|A1, ..., Ai−1

)
. With the previous bounds, we then get P

(
A1 ∩ ... ∩Am

)
⩾

(1 − 2p)m > 0 in the first case, as p ⩽
1

4
when 4dp ⩽ 1, and P

(
A1 ∩ ... ∩Am

)
⩾
∏
j∈[m]

(1 − xj) in the

second case.

We now turn to the induction. For m = 1, these are the assumptions together with 1 ⩽ 2 and xj ∈ [0, 1).
For the step, we start by ordering the events (re-indexing if necessary) so that A2 to Ak are the ones

dependent on A1. By repeatedly applying the law P (A|B,C) = P (A ∩B|C)
P (B|C)

, we get P
(
A1|A2, ..., Am

)
=

P
(
A1 ∩ ... ∩Ak|Ak+1, ..., Am

)
P
(
A2 ∩ ... ∩Ak|Ak+1, ..., Am

) . We can then bound the top by sub-events P
(
A1 ∩ ... ∩Ak|Ak+1, ..., Am

)
⩽

P
(
A1|Ak+1, ..., Am

)
. Then with mutual independence P

(
A1|Ak+1, ..., Am

)
⩽ P (Ai), so that the top is

bounded by p or xi
∏

j∈δG(Ai)

(1− xj).

To bound the bottom, we use a opposites and a union bound P
(
A2 ∩ ... ∩Ak|Ak+1, ..., Am

)
= 1 −

P
(
A2 ∪ ... ∩Ak|Ak+1, ..., Am

)
⩾ 1 −

k∑
j=2

P
(
Aj |A2, ..., Am

)
. Here we use the induction hypothesis on

families of events of size < m, to get bound 1 −
k∑

j=2

P
(
Aj |A2, ..., Am

)
⩾ 1 − 2p(k − 1) and since

k − 1 ⩽ max
i

(degG(Ai)), we get 1 − 2p(k − 1) ⩾
1

2
, so that in the end P

(
A1|A2, ..., Am

)
⩽ 2p as de-

sired.
For the parallel conditions, we repeatedly use P (A|B,C)P (B|C) = P (A ∩ B|C) to rewrite the bot-

tom as P
(
A2 ∩ ... ∩Ak|Ak+1, ..., Am

)
=

k∏
j=2

P
(
Aj |Ak+1, ..., Am

)
. Here the induction hypothesis and

xj < 1 tells us that
k∏

j=2

P
(
Aj |Ak+1, ..., Am

)
⩾

∏
j∈δG(Ai)

(1 − xj), so that we retrieve the desired bound

P
(
A1|A2, ..., Am

)
⩽ x1.

ADD: exercise disjoint cycles from chapter in extremal combi book ?
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14.5 The Moser-Tardos algorithm

In this section, we study how to use the local lemma to develop algorithms that actually find the structures
that the local lemma asserts exist.

The Moser-Tardos algorithm works in a setting where the events Ai depend on random variables Xi,
which are chosen independently at random. For k-SAT, the Xi where the random truth assignments for
variable i and the Aj are the events that clause j is unsatisfied. The algorithm works as follows. Start
with a set of random values for the Xi and check if one of the Ai occurs. If it doesn’t, we have

⋂
i∈[m]

Ai

as desired for this assignment, and we stop. Otherwise, we select an Ai that occurs and consider the set
of variables vbl(Ai) that determine Ai (for k-SAT, the variables in the unsatisfied clause). We re-sample
these variables independently according to their distribution and check if we have

⋂
i∈[m]

Ai. We do these

re-sampling steps until
⋂

i∈[m]

Ai occurs.

The algorithm may therefore not terminate. However, we can show that under the assumptions of the
local lemma, the algorithm has a finite expected runtime dependent on the x values from the local lemma.

Moser-Tardos:

For events Ai, we consider their dependency graph G in which Ai and Aj are adjacent if they’re
dependent, in the sense that theyre not adjacent if they’re in a maximum set of mutually independent
events.
If one can find xi ∈ [0, 1) so that P (Ai) ⩽ xi

∏
j∈δG(Ai)

(1 − xj), then the Moser-Tardos algorithm has an

expected runtime of at most
∑
i∈[m]

xi
1− xi

.

The question is how often one expects to see event Ai be selected due to occurring for the current sample,
for all i. The algorithm corresponds to a random process in which we can keep track of the Ai that are
selected. More precisely, an instance of the algorithm corresponds to a random, possibly infinite sequence
S1, S2, ...of Ai that are selected. We’re then interested in the (possibly infinite) number Ni of times A
occurs in the sequence.
PROBLEM: probabilistic justification that E(Ni) is finite ???

We will build a structure called a witness tree that is associated to the sequence S1, S2, ... and to Ai.
To get bounds, combine the local lemma assumptions to a study these trees as originating from a Galton-
Watson process.
Galton-Watson:
We construct a (possibly infinite) labeled tree rooted at Ai as follows. Start by adding the root r and
label it l(r) = Ai . In each iteration, go over the vertices v added during the previous iteration and do
the following: for all Aj ∈ δ(l(v)), create a child u with label l(u) = Aj with independent probability xj .
Stop only if no children were added in the previous iteration.
We now seek the probability for a finite tree T rooted with label Ai to occur as outcome of this pro-
cess. For each vertex v in the tree, the probability it was included is xl(v), for vertices not in the
tree to not have been included, the probability is 1 − xl(u) for all parents v such that l(u) /∈ δ(l(v)).
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By independence, we get
1

xi

(∏
v∈T

xl(v)

)∏
v∈T

∏
l(u)/∈δ(l(v))

(1− xl(u))

 where the first term cancels out

with the next one so as to get the right probability, due to the root being labeled deterministicly.
Since all vertices but the root are the children of exactly one parent, we can rewrite the probability

as
1− xi
xi

(∏
v∈T

xl(v)

1− xl(v)

)∏
v∈T

∏
δ(l(v))

(1− xl(u))

. We can recognize the local lemma assumption’s ex-

pression in that probability.
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14.6 Solutions
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15 Expander graphs

15.1 Definitions and key properties

As you can tell from the titles of the previous chapters, expander graphs have many applications. Expander
graphs arise in the context of spectral graph theory, in which we use the eigenvalues of the adjacency ma-
trix of a graph to deduce some of its properties.

Recall that the adjacency matrix of a graph is a matrix with entries auv = χ{u,v}∈E . It’s symmetric,
and has therefore real eigenvalues and a orthonormal basis of eigenvectors, by the spectral theorem. Spec-
tral graph theory tries to relate these eigenvalues to the graph.
An example is for example the following property:

Largest eigenvalue of d-regular graphs:

The largest absolute value of eignevalues of the adjacency matric of a d-regular graph is d.

Proof: If A is the adjacency matrix of the graph, then A × 1V is the vector with coordinates deg(v).
For d-rgular graphs, we get the nice case that A × 1V = d· 1V , so that d is a eigenvalue. To see maxi-
mality, take a eigenvector w with values λ, so that Aw = λw, and look at the norm ∥.∥∞. Let’s call u

the coordinate in which the max-norm is attained: we have

∣∣∣∣∣∣
∑

v∈Γ(u)

wv

∣∣∣∣∣∣ = |λwu|, so that we get bound

|λ|∥w∥∞ = |λ||wu| ⩽
∑

v∈Γ(u)

|wv| ⩽ d∥w∥∞ by d-regularity.

A more important property is:

The expander mixing lemma:

For a d-rgular graph, and notation e(S, T ) = |{{u, v} ∈ E : u ∈ S, t ∈ T}| for the number of
edges between S ⊆ V and T ⊆ V (note that we allow S and T to overlap), and λ for the second largest
absolute value of eignevalues of the adjacency matrix of the graph, we have:∣∣∣∣e(S, T )− d

|V |
|S||T |

∣∣∣∣ ⩽ λd
√
|S||T |

Proof: We can write e(S, T ) =
∑

{u,v}∈E:u∈S,t∈T

1 = 1tSA1T for indicator vectors 1S , 1T of the vertex

sets. Now, what is this product in the spectral basis ? We may take a basis containing eigenvector

w1 =
1

∥1V ∥2
1V , as eigenspaces are orthogonal (recall that for eigenvalues λ, µ and eigenvectors xλ, xµ,

we can write xtλAxµ as λxtλxµ and µxtλxµ, so that when the eigenvalues are different, xtλxµ = 0).
By denoting the other eigenvectors with wi, for eigenvalues λi in decreasing order of indices, we have

e(S, T ) = d

(
1tS1V

) (
1tT 1V

)
∥1V ∥22

+

|V |∑
i=2

λi
(
1tSwi

) (
1tTwi

)
, recalling that the

(
1tTwi

)
are the coordinates of 1T in

that basis. Now,
(
1tS1V

) (
1tT 1V

)
= |S||T | and ∥1V ∥22 = |V |.
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By rewriting e(S, T )− d

|V |
|S||T | =

|V |∑
i=2

λi
(
1tSwi

) (
1tTwi

)
, we can bound and rewrite as follows

∣∣∣∣e(S, T )− d

|V |
|S||T |

∣∣∣∣ ⩽
|V |∑
i=2

|λi||
(
1tSwi

) (
1tTwi

)
| ⩽ λ

|V |∑
i=1

|
(
1tSwi

) (
1tTwi

)
|. By interpreting the latter factor as

|V |∑
i=1

|
(
1tSwi

) (
1tTwi

)
| =

(W1S)
t(W1T ), using Cauchy-Schwartz provides final upper-bound ∥W1S∥2∥W1T ∥2 = ∥1S∥2∥1T ∥2 =√

|S||T |, where we used orthonomrality of W .

Here are a fun corollary of the expander mixing lemma as exercise:
Exercise 1: For a d-regular graph G with second largest absolute value of eigenvalues λ, show that if

λ > 0, then χ(G) ⩾
d

λ
.
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15.2 Derandomising algorithms with expanders

We’ll describe a general method for the following problem. Suppose we have a binary decision problem
(for example: is this graph Hamiltonian ?) and a probabilitsitc algorithm A that for an instance x of the
problem will output a decision in {0, 1}, based on m random coin-tosses r ∈ {0, 1}m it performs for its exe-
cution, such that the probability of taking the wrong decision can be bounded by P (A(x, r) is false) ⩽ pA.

An approach to improve the decision is to repeat this algorithm 2t+1 times, an then give as final output the
majoritary output among the 2t+1 runs. For this to yield a false output, there have to be at least t+1 false
outputs among 2t+ 1 the runs. Using the bounds on the upper tail of the binomial distribution (Hoeffd-

ing’s inequality), we can estimate that error probability with e−2(2t+1)(1−pA− t
2t+1)

2

(assuming
t

2t+ 1
⩾ pA).

An alternative appraoch is he following idea. Choose only one r at random, then select m more r′

based on this r, according to some "diversification criterion". Then, run the algorithms A(x, r′) and take
the majority output.
Here, onely one random string had to be generated, while we hope that our "diversification criterion"
provides sufficiently different samples to get a good estimate on how A answers on average.
The way we’ll choose the r′ is through expander graphs: we’ll choose a vertex r at random and take all
r′ ∈ Γ(r), using the intuition that in expander graphs, all vertices are globally close to each other, so that
Γ(r) is a diversified sample.

So, we consider a d-regular graph on 2m vertices (representing the r ∈ {0, 1}m) which has seconf larest
absolute value of eigenvalues λ. With our procedure, the probability of ending up with a false output can
be bounded as follows:

Mixing lemma bound:

The probability of a false output is at most
1

2m

(
λ

d

)2( 2

1− 2pA

)2

, assuming pA <
1

2
.

Proof: Fix an instance x. For it, we have region of failure T = {r ∈ {0, 1}m : A(x, r) is false}, so that

when we take an r at random, we have P (A(x, r) is false) =
|T |
2m

⩽ pA. We can do the same for the
algorithm B we just explained, calling its region of failure S. Our goal is then to upper-bound |S|, as we

have P (B(x, r) is false) =
|S|
2m

.

When B fails at r, it was because the majority of the A(x, r′) failed for r′ ∈ Γ(r). Since we’re in a d-regular

graph, that’s at least
d

2
failures. So for each vertex in S, it must be connected to at least

d

2
vertices of T ,

so that e(S, T ) ⩾
d|S|
2

. We can then apply the mixing lemma to get bound e(S, T )− d|S||T |
2m

⩽ λ
√
|S||T |.

We’ll lower-bound the left with
d|S|
2
− d|S|pA and the right with λ

√
|S|pA, so that rearranging yields

|S| ⩽
(
λ

d

)2( 2

1− 2pA

)2

when pA <
1

2
.

We see that the ratio λ
d makes an appearance, and that we which to build a graph for which this is

small. Ramanujan graphs fit this description, for example. We’ll see them in the section on constructions.

COMPLETE: with 23.3 of extremal combi book
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15.3 Error correcting codes with expanders

Recall the context of error correcting codes.
We have a binary word w ∈ {0, 1}k of length k which we encode into f(w) ∈ {0, 1}n, where f(w) can be
computed in polynomial time, and is injective. The image of f is a code C ⊆ {0, 1}n. We want to be able to
recover w from f(w)+µ where µ ∈ {0, 1}n is noise (think of addition as in Z2). This is where the distance
of the code comes into play. The Hamming distance ∆(x, y) of binary words x, y is the number of letters
in which they differ. We want ∆(f(x), f(y)) to be large, so that we can distinguish f(x), f(y) for relatively
small noise. The distance of the code is d(C) = min

X,Y ∈C
∆(X,Y ) and serves as a lower bound on the distance

of codewords. If ∆(0, µ) <
d(C)

2
, then ∆(f(x), f(x) + µ) <

d(C)

2
, so that ∆(f(y), f(x) + µ) ⩾

d(C)

2
for

all other y, since otherwise ∆(f(x), f(y)) ⩽ ∆(f(x), f(x) + µ) + ∆(f(x) + µ, f(y)) < d(C), contradicting

minimality. So for less then
d(C)

2
changes to the code transmitted, one can still recover the correct code-

word, by looking for the closest codeword t the received message. We also want the tasks of finding the
closest codeword and it’s encoding word to be efficient.

Expander codes are a method for using a linear code on small code words repeatedly, so that the dis-
tance of the expander code increases more then linearly with the number of code applications.
Recall that a code is linear when f(x)+f(y) is a codeword for any x, y, in the sense ∀x, y∃z, f(x)+f(y) =
f(z).
COMPLETE: examples of linear codes.

An expander code is built from a (d, n, λ)-expander graph as follows. We create 2 copies of the ver-
tices of the graph, the bipartition sets L and R. We add an edge between a vertex of L and one of R if
the vertices the corresponded to in the expander where adjacent.
FIX: its still d-regular, but there is no explanation why λ is the same...
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15.4 Pseudo-random generators with expanders

chapter 7,8 of ExpanderGraphApplications
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15.5 Constructing expanders

Ramanujan graphs:
Ramanujan graphs originate in the slightly esoteric study of representations of algebraic structures at
graphs. In a finite field Fp for a prime p, given two elements a ̸= 0 and b, we can write each element
as a product with a and as a sum with b, so that there are c and d such that ac = b + d. Let’s repre-
sent this as a graph where we represent pairs (a, b) with a ̸= 0 as vertices and we connect them if ac = b+d.

Such graphs are of interest to us since we can build and study them systematically. For example, we
can show that such a graph is (p − 1)-regular: for a fixed (a, b) with a ̸= 0, there are (p − 1) non-zero
elements that we can represent simulaneously as ac and b + d, which correspinds to a neighbour (c, d),
each different as the element ac = b+ d is different.
We will now derive such properties of the graph by mixing algebraic and graph-theoretic notions and
arguments.

Lemma:

For p > 5, if a = c or b = d, the corresponding vertices have no common neighbours, and other-
wise, they have exactly 1 neighbour.

Proof: To see the first case, we use contradiction. If a = c and the vertices had common neighbour (e, f),
we’d have b + f = ae = ce = d + f so that b = d, and a similar argument holds when b = d, as a, c ̸= 0

are invertible. To see the second case, solve

{
ae = b+ f

ce = d+ f
be subtracting to get (a− c)e = (b− d). Since

(a− c) and (b− d) are non-zero in this case, we get e = (a− c)−1(b− d) ̸= 0. The solution, and hence the
neighbour is unique as f = ae − b = ce − d is uniquely determined. Note that in the solution must have
existed in the first place, as otherwise, in all cases two different vertices have no common neighbours, so
that edges form a matching, so that |E| ⩽ 2|V |. However, regularity implies 2|E| = |V |(p − 1), so that
p ⩽ 5, a case we purposefully exclude.

We will now derive a bound on λ:

Bound:

For the type of Ramanujan graphs we just built, λ ⩽
√
3p.

Proof: This bound is obtained with some manipulations. If A is the adjacency of the graph, then recall
that A2 has its entries counting the length 2 u-v-walks. By the previous lemma, its off-diagonal entries are
1 if a ̸= c and b ̸= d, and 0 if a = c or b = d. Its diagonal entries are p− 1, by regularity (walk forth and
back to the neighbours). Another fact we noted is that 1V is an eigenvector, and that we can build a base
of eigenvectors all orthogonal to 1V . To estimate the other eigenvalues µ, we may therefore consider them
having eigenvectors xµ orthogonal to 1V . We can then write A2 = (p− 2)I + J − E, where J is the all-1
matrix, and E is the error matrix defined by this decomposition. The point is that we have, by multiplying
with xµ, the identity µ2xµ = (p− 2)xµ −Exµ, since Jxµ = 0 as 1tV xµ = 0. This says that

(
p− 2− µ2

)
is

an eigenvalue of E. Taking a closer look at the 0/1-matrix E, we realize that its the incidence matrix of
a graph with same vertex set as the inicial one, but with edges precisely if a = c or b = d. This graph
is (2p− 3)-regular, as we have p neighbours of an (a, b) for which a = c, p− 1 neighbours of an (a, b) for
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which b = d, and we counted the case a = c and b = d in both cases, which are the same vertex. We can
therefore use the fact that its anbsolute eigenvalues are bounded by (2p− 3) to get |p− 2− µ2| ⩽ 2p− 3
so that µ2 + 2− p ⩽ 2p− 3 which imples µ ⩽

√
3p.

We can upperbound
λ

d
⩽

√
3p

(p− 1)
= O

(
1
√
p

)
, which yields a decent bound in the derandomization

from the previous sections. However, note that the construction required n = p(p − 1), so that we don’t
exactly meet the framework of that context.

COMPLETE: chapter 5 of ExpanderGraphApplications and chaper 15.2 on Ramanujan graphs from ex-
tremal combi book
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15.6 Solutions

Exercise 1:
By applying the mixing lemma with S = T and where S is an independent set, so that e(S, T ) = 0, we get

|S| ⩽ λ

d
|V |. Since a coloring can be though of as a partition of vertices into independent sets, by spliting

|V | into the sum of the partition sets and using the bound, we get |V | ⩽ χ(G)
λ

d
|V | from which the result

follows.
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16 Basics in convex optimization

16.1 Convex sets, functions and optimization problems

Convex programs
Semidefinite programming
Max volume ellipsoids, in particular for geometric ILP algorithm by Lenstra (ref. lectnotes-GIP Paat
Weismantel pdf-page 30).

Form differentiable optimization, we know first and second order conditions to compute local optima.
We’re interested in finding a large class of functions for which the local optima are also global for two
reasons. The first is that for such functions, we expect local search algorithms to lead to a global optimum,
and the second is that we may need to use such algorithms, in case the equations from the first order
condition are difficult to solve. Additionally, we hope that this class of functions need not be differentiable,
while keeping most of the properties of their differentiable counterparts.

We’ll work on convex function domains, as these allow us to easily use arguments from 1D calculus.

Definition:

A set C ⊂ Rd is convex if it contains all segments between endpoints in C: for all x, y ∈ C and
s ∈ [0, 1], we have sx+ (1− s)y ∈ C.

What goes "wrong" with differentiable functions that have local non-global optima ?
For example, consider f : C ⊂ Rd → R, where C is convex (and open) and f is twice continuously differ-
entiable, so that x and y are local minima but f(x) > f(y). We know that for both points, the gradient
is zero and the hessian is positive semidefinite. Yet, if we observe f on the segment [x, y], f(x) > f(y)
implies that the derivative must have been non-zero along that segment (finite difference theorem), so
it must have increased and decreased along it, as it’s zero at both endpoints. A strong condition that
prohibits this is when restrict the class of function studied to those who’s hessian is positive semidefinte
on all of C. Then the second derivative along the segment can’t change sign, so that the first derivative
is monotone: if it’s non-zero, one of the endpoints will violate the first order condition, and of it stays at
zero along the segment, we can’t have f(x) > f(y).

We’ll now try to get rid of the differentiable conditions. We’ll consider the Taylor expansion with rest
f(y) = f(x) + ∇f(x)t(y − x) + (y − x)t∇2f(z)(y − x) with z ∈ [x, y]. The condition that ∇2f(z) is
positive semidefinite on all of C provides f(y) ⩾ f(x) +∇f(x)t(y − x). Note that this weaker condition
also provides the result we seek: if x satisfies the first order conditions, and the previous inequality holds
on all of C, then x is a global minimum.
In fact, the two conditions are equivalent as the contrapositive of the converse holds: if there was a point
x ∈ C and a direction d so that dt∇2f(x)d < 0, then for ε > 0 so that dt∇2f(y)d < 0 for all y ∈ B(x, ε)
and y = x+ εd, the Taylor expansion with rest would result in f(y) < f(x) +∇f(x)t(y − x).

In the final step, using condition f(y) ⩾ f(x) + ∇f(x)t(y − x) twice on an point sx + (1 − s)y of
the segment [x, y], getting f(x) ⩾ f(sx + (1 − s)y) + ∇f(sx + (1 − s)y)t(x − sx − (1 − s)y) and
f(y) ⩾ f(sx+(1−s)y)+∇f(sx+(1−s)y)t(y−sx−(1−s)y), we obtain sf(x)+(1−s)f(y) ⩾ f(sx+(1−s)y)
as consequence. This last condition is the one that will define the class of functions that we want to work
with, as it doesn’t require differentiable, but has the desired properties when the function is additionally
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differentiable. Indeed, if a function satisfies sf(x)+(1−s)f(y) ⩾ f(sx+(1−s)y) and is differentiable, then

f(y) ⩾
f(sx+ (1− s)y)− f(x)

(1− s)
+ f(x) and taking the limit s→ 1 provides f(y) ⩾ f(x) +∇f(x)t(y− x).

If a function satisfies sf(x) + (1 − s)f(y) ⩾ f(sx + (1 − s)y) for all x, y ∈ C and s ∈ [0, 1] and we
consider two points with f(x) > f(y), then x can’t be a local minimum, as in particular for s → 1,
f(x) = max(f(x), f(y)) > sf(x) + (1− s)f(y) ⩾ f(sx+ (1− s)y).

As a conclusion:

Definition:

We consider a convex C ⊂ Rd.
We call a function f : X → R convex if it satisfies sf(x) + (1− s)f(y) ⩾ f(sx+ (1− s)y) for all x, y ∈ C
and s ∈ [0, 1]. If f is continuously differentiable, then this is equivalent to f(y) ⩾ f(x) +∇f(x)t(y − x)
on all of C, and if f is twice continuously differentiable, then this is equivalent to ∇2f(z) being positive
semidefinite on all of C.
For such functions, critical points can’t be saddle points and local minima are global ones.

We now define the standard convex optimization problem:

Definition:

Consider convex functions f0, f1, ..., fk : Rd → R, matrix A ∈ Rm×d and vector b ∈ Rd.

The standard convex optimization problem is min(f0(x)) st.

{
fi(x) ⩽ 0,∀i ∈ [k]

Ax = b
.

In such a problem, we minimise a convex function over a convex space. Indeed is x and y are fea-
sible solutions, then for s ∈ [0, 1], A(sx + (1 − s)y) = sAx + (1 − s)Ay = sb + (1 − s)b = b and
fi(sx+ (1− s)y) ⩽ sf(x) + (1− s)f(y) ⩽ 0, so that sx+ (1− s)y is a feasible solution as well. For such
problems, local minima are global ones.

Example:
Consider the problem of finding a pair of points in polyhedra Ax ⩽ b and By ⩽ d that are closest to each
other, in the sense that they minimise ∥x− y∥2. The norm function is convex by the triangular inequality
and Ax− b is convex by linearity.
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16.2 Lagrange relaxation and duality

In constrained differentiable optimization, we proceed differently as in the unconstrained case. If we seek
the lowest point on the unit circle, aka. a solution to min y st. x2 + y2 = 1, the first order condition fails.
However, by parameterise the circle as (cos(t), sin(t)), we turn the problem in to an unconstrained one.
In general, if f, g : Rd → R and we seek a solution to min f(x) st. g(x) = 0, and we can parameterise the
set of feasible solutions near a feasible solution x via p(y) : BRm(0, r) → Rd, so that g(p(BRm(0, r))) = 0
and p(0) = x, then x is a local minimum if 0 is for f ◦ p. Since the latter problem is unconstrained, we
can use the first order condition (assuming a smooth parameterisation) to find ∇f(p(0))tD0p = 0. If we
note that differentiating g ◦ p yields ∇g(p(0))tD0p = 0, we can draw an interesting conclusion when the
feasible set is (d− 1)-dimensional: in that case, ∇f(x) and ∇g(x) must be orthogonal to the hyperplane
spanned by the columns of D0p, aka. they must be parallel. This is the case in our example, as the lowest
point on the unit circle is one where the normal to the tangent to the circle points down.

The latter condition states that ∇f(x) = µ∇g(x) for some scalar µ, and is a first order condition for
constrained differentiable problems. By notincing that it can be reformulated as ∇x(f − µg)(x, µ) = 0,
where ∇x is differentiation wrt. the variable x of (x, µ) 7→ f(x) − µg(x), and that ∇µ(f − µg)(x, µ) =
0 ⇔ g(x) = 0, this first order condition for constrained problems of form min f(x) st. g(x) = 0 becomes
the first order condition for the unconstrained problem min

x,µ
(f(x)− µg(x)).

We can do some loose generalisations of these arguments. For a problem of form min f(x) st. g(x) ⩽ 0,
point verifying g(x) < 0 are interior points to the feasible set, and we can use the regular first order
condition. Note that in that case ∇f(x) = µ∇g(x) still holds, as we can set µ = 0. Further more, in this
particular case, we can say more about the scalar µ. Indeed, recall that the gradient points towards the
steepest ascending direction, as f(y) = f(x) +∇f(x)t(y − x) +O

(
∥y − x∥2

)
and by choosing a direction

δ and considering
f(x+ tδ)− f(x)

t
= ∇f(x)tδ+O(t) we se that f(x+ tδ)− f(x) has the sign of ∇f(x)tδ

for t > 0 small enough.
Now if µ > 0 in ∇f(x) = µ∇g(x), ∇f(x) would point in the same direction of ∇g(x). Then for small
t > 0, the point y = x − t∇f(x) = x − tµ∇g(x) would verify g(y) < g(x), so that it would be feasible,
and f(y) < f(x), so that x can’t be a local minimum. Therefore, if x is a local minimum for the problem
min f(x) st. g(x) ⩽ 0„ we can summarize the above cases in the necessary condition that there exist a
λ ⩾ 0 so that ∇f(x) = λ∇g(x).

Again, this reformulates to the regular first order condition on min
x,λ

(f(x) − λg(x)), but st. λ ⩾ 0 this

time. This leads us to the study of:

Definition:

For an optimization problem of form min(f(x)) st.

{
gi(x) ⩽ 0,∀i ∈ [r]

hj(x) = 0,∀j ∈ [s]
, we consider

the Lagrangian L(x, λ, µ) = f(x) + λtg(x) + µth(x) with domain Rd × Rr
⩾0 × Rs.

As for convexity in the previous section, we motivated the Lagrangian in a differentiable setting, but we’ll
study it for non-differentiable cases as well.

Since the first order conditions of a minimization problem and its Lagrangian are linked (in the dif-
ferentiable setting), we’ll investigate optimizing the Lagrangian and its relation to the main problem.
First note that for a feasible solution to the main problem x, we have L(x, λ, µ) ⩽ f0(x) as hj(x) = 0,

232



fi(x) ⩽ 0 and λ ⩾ 0. So if p∗ is the minimum value of the main problem, we have inf
x
(L(x, λ, µ)) ⩽ p∗.

It turns out that for some problems, g(λ, µ) = inf
x
(L(x, λ, µ)) has an explicit analytic form. Hence our

interest in:

Definition:

The Lagrange dual function associated to a general optimization problem is g(λ, µ) = inf
x
(L(x, λ, µ)).

Since g(λ, µ) ⩽ p∗ for all µ and λ ⩾ 0, we may seek the best lower bound this gives to the main problem
by maximising g(λ, µ) st. λ ⩾ 0. An interesting remark can then be made: g(λ, µ) is concave (−g(λ, µ) is
convex), regardless of the nature of the fi and hi, so that we’re solving a convex minimisation problem,
but one for which g may not be differentiable, or may even only evaluated by solving an unconstrained
optimisation problem inf

x
L(x, λ, µ) as routine.

Indeed, note that L(x, tλ+(1−t)λ′, tµ+(1−t)µ′) = tL(x, λ, µ)+(1−t)L(x, λ′, µ′) (split f0 = tf0+(1−t)f0),
so L(x, tλ+(1− t)λ′, tµ+(1− t)µ′) ⩾ tg(λ, µ)+(1− t)g(λ′, µ′) and finally g(tλ+(1− t)λ′, tµ+(1− t)µ′) ⩾
tg(λ, µ) + (1− t)g(λ′, µ′).

One can try to describe when strong duality holds:

Slater’s condition:

For the standard convex optimization problem, if A has full rank and there exists a feasible inte-
rior point x of the solution space, in the sense that fi(x) < 0 for i = 1, ..., n, then max

λ⩾0,µ
g(λ, µ) = p∗.

Proof: The proof is based on a convex separation theorem that we won’t prove. We could focus on
a sort of graph of the solutions, where we relax the equality constraints Ax = b. This would be
G = {(f1(x), .., fn(x), Ax − b, f0(x)) : fi(x) ⩽ 0, i = 1, ..., n}, which isn’t convex, but who’s epigaph
E = {e ⩾ g : g ∈ G} is convex. Indeed, for e1 and e2 in E, te1 + (1 − t)e2 ⩾ t(f1(x1), .., fn(x1), Ax1 −
b, f0(x1)) + (1 − t)(f1(x2), .., fn(x2), Ax2 − b, f0(x2)), and with convexity of the involved functions te1 +
(1− t)e2 ⩾ (f1(tx1+(1− t)x2), .., fn(f1(tx1+(1− t)x2)), A(f1(tx1+(1− t)x2))−b, f0(f1(tx1+(1− t)x2))).
Since fi(tx1 + (1− t)x2) ⩽ 0 by convexity for i = 1, ..., n, this means te1 + (1− t)e2 ∈ E.
This epigraph will never intersect the open ray 0 × 0×] −∞, p∗[, since this would mean that there is an
x which is feasible and has lower objective value then the minimum. The convex separation theorem we
mentioned now provides a hyperplane directed by (λ, µ, v) ̸= 0 such that vt ⩽ α for (0, 0, t) in the ray
0 × 0×] −∞, p∗[, and

∑
λifi(x) + µt(Ax − b) + vf0(x) ⩾ α for x such that fi(x) ⩽ 0, i = 1, ..., n, since

the graph belongs to the epigraph and is also separated. Note that the last expression resembles that of
the Lagrangian, which is where the idea of using hyperplane separation may have come from.
By choosing a sequence of points in the ray converging to (0, 0, p∗), we see that in the limit vp∗ ⩽ α.
This leads to an upper bound on p∗ by an expression that looks like a Lagrangian, which is just what
we want, so we’ll see that assumptions from Slater’s condition are only there to make this proof finish well.

We note that λ, µ, v ⩾ 0: otherwise, since we have an interior point x, we seen that all positive scaled
standard basis vectors of the space of E are in E, so that if some corresponding hyperplane coefficient was
negative, we could contradict ⩾ α by evaluating at large standard basis vectors.

Now, if v > 0, then
∑

λifi(x) + µt(Ax − b) + vf0(x) ⩾ α ⩾ vp∗ becomes L
(
x,
λ

v
,
µ

v

)
⩾ p∗ and we get

max
λ⩾0,µ

g(λ, µ) ⩾ p∗ and therefore max
λ⩾0,µ

g(λ, µ) = p∗, as desired.
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Otherwise v = 0 and we’ll see how the assumptions of Slater’s conditions make this case impossible. By
evaluating at the feasible interior point x, we then have

∑
λifi(x) ⩾ α ⩾ 0 and the fact that fi(x) < 0

for i = 1, ..., n and λ ⩾ 0 implies λ = 0. Since (λ, µ, v) ̸= 0 as it directs a hyperplane, we’re left with
µ ̸= 0. For all x such that fi(x) ⩽ 0, i = 1, ..., n, the expression of the halfspace has now been reduced
to µt(Ax − b) ⩾ 0. Since for the interior point µt(Ax − b) = 0 and we can find some r, such that if
∥x − y∥ ⩽ r, then fi(y) < 0 (continuity), there is such a y for which µt(Ay − b) < 0, unless µtA = 0, as
µt(Ax − b) = 0 isn’t a full dimensional space. But both µtA = 0 and µt(Ax − b) < 0 are excluded, the
latter by the hyperplane condition µt(Ax− b) ⩾ 0 and the former by assuming that A has full rank.

We now look at relations between the primal and the dual solution:

Complementary slackness:

If g(λ, µ) = p∗ = f0(x) for feasible x and (feasible :=) λ ⩾ 0, µ, then for all i = 1, ..., n, at least
one of λi = 0 or fi(x) = 0 holds, aka. λifi(x) = 0.

Proof: We have f0(x) = g(λ, µ) ⩽ L(x, λ, µ) ⩽ f0(x), so that L(x, λ, µ) = f0(x) and therefore
∑

λifi(x) =

0 since x is feasible so Ax = b. Since fi(x) ⩽ 0 and λ ⩾ 0 for i = 1, ..., n, this negative sum is only zero
when all terms are, so λifi(x) = 0.
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16.3 Karush-Kuhn-Tucker conditions

Karush-Kuhn-Tucker conditions:

If a standard convex minimization problem with differentiable fi has a finite local minimum and
strong duality holds (for example if it satisfies the Slater’s conditions), then there is a solution to the
following system, known as KKT conditions:

fi(x) ⩽ 0, i = 1, ..., n

Ax = b

λ ⩾ 0

λifi(x) = 0, i = 1, ..., n∑
λi∇fi(x) +Atµ+∇f0(x) = 0

Conversely, if this system has a solution, then the corresponding x is a minimum.

The reason convex optimization is an active area of research is that this system may be hard to solve, so
that optimization algorithms have to be developed.

Proof: The first 3 conditions represent feasibility, the 4th is complementary slackness, and the last is
the first order condition of the unconstrained problem inf

x
L(x, λ, µ). If strong duality holds, the solu-

tions attaining the optima solve the system. Conversely, we note that for a solution to the KKT system,
L(x, λ, µ) = f0(x) (feasibility and complementary slackness) and x is a critical point of the concave
L, which has a single local and hence global optimal value, so that L(x, λ, µ) = g(λ, µ). Now since
p∗ ⩾ g(λ, µ) = f0(x) ⩾ p∗, x attains the minimum.

We now give a more direct and geometric derivation of the KKT conditions.
We consider the general problem min f0(x) st. fi(x) ⩽ 0, i = 1, ..., n for C1 functions fi.
If x is a local optimum, then we consider the active constraints i ∈ A such that fi(x) = 0. For any feasible
y (sufficiently close to x), we have fi(y) ⩽ fi(x) for i ∈ {0} ∪A.
We then get that

TO FINISH: Ruszczyński chap 3.4.
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16.4 Solutions
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17 The ellipsoid method(s)

17.1 The ellipsoid method method

The ellipsoid method solves an optimization problem by a kind of binary search, with a separation oracle
as subroutine. It also requires the knowledge of two balls Bi and Bc contained and containing the feasible
set respectively. Starting from Bc, we check if the iteration steps ellipsoids center is feasible. If it isn’t,
we use the separation oracle to receive a halfspace (with the current ellipsoids center on its boundary)
containing the feasible set, and if it is, we consider the halfspace of (linear) cost better then that of the
current ellipsoids feasible center. In both cases, we proceed by building a new ellipsoid containing the
intersection of the previous one with the halfspace at hand and of minimal volume for the latter property (a
Löwner-John ellipsoid.). One can show that after finitely many iteration, the center of that steps ellipsoid
will be feasible and (up to arbitrary additive error) optimal. The ellipsoid method requires taking square
roots, so it’s numerically inaccurate.

Algorithm:
Input: A convex set P of feasible solutions to the optimization problem, together with balls
B(x0, r) ⊆ P ⊆ B(x0, R) (in particular we need a feasible solution x0 and the feasible sets have
to be full-dimensional), and a separation oracle.
Task: Find a feasible y ∈ P so that its cost c · y ≥ sup(c · x : x ∈ P )− ε for a given ε.

Procedure:
Start with y := x0 and E0 := B(x0, R).
For N(ε, r, R, d) iterations (over k), do:
→ Run the separation oracle for y and P
→ If xk ∈ P , set y := xk and then define Ek+1 to be the minimum volume ellipsoid containing the
intersection of Ek and the halfspace c · x ≥ c · y
→ Else, let a · x = a · xk be the returned separating hyperplane passing through xk, and define Ek+1 to
be the minimum volume ellipsoid containing the intersection of Ek and the halfspace a · x ≤ a · xk.
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Start with initial ellipsoid

Enough iterations ?

yes no

Stop and output current center
Run separation
oracle: feasible ?
(else separate)

yes no

Find the minimum volume
ellipsoid containing the current
one and the halfspace
containing the feasible set,
given by the separation oracle.

Find the minimum volume
ellipsoid containing the current
one and the halfspace
of better cost then that of the
current center.

Before justifying the procedure, we want to point out that the input of the algorithm isn’t an obviously
attainable one. In the cases we’ll present as applications, the input must be found by an analysis specific
to the problem.
As a simpler example, we can consider an LP. Here the separation oracle checks if a candidate x is in P
(given in H-description) by computing and checking Ax ≤ b. If an inequality is violated, it’s corresponding
hyperplane serves as separating hyperplane. Finding the balls is less obvious. If we assume that the origin
is feasible, we can look cubes a[0, 1]d ⊆ P ⊆ b[0, 1]d and use balls B(a21,

a
2 ) ⊆ P ⊆ B(a21, b

√
d). This is for

example the case for capacitated transportation/matching problems.

We’ll see that vol(Ek) ⩽ e−
k

2d+2 vol(Bd(0, 1)) for our construction of ellipsoids.
We now show a first loop invariant: each Ek contains x ∈ P : c · x ≥ c · y. This is true by assumption
for E0 as it contains all of P . If at an iteration, xk ∈ P , then Ek+1 contains x ∈ P : c · x ≥ c · y as
we updated y := xk and defined Ek+1 that way. Otherwise, we note that by induction Ek contained
x ∈ P : c · x ≥ c · y, which is a feasible set and is therefore included in the halfspace a · x ≤ a · xk, so that
it’s contained in Ek+1 in this case too.
A second invariant invariant is that y is always feasible. It is at the beginning (y := x0) by assumption
and is only ever replaced by feasible points.

If P is closed, it’s also compact, due to being bounded by B(x0, R). So we may assume that the op-
timum wrt. c·x is attained in z. To estimate the distance c· z− c· y (⩾ 0 due to assuming a maximisation
problem) of our solution candidate y at an iteration to the actual optimum, we’ll use volumetric argu-
ments. We’ll find a set included in Ek whose volume depends on c· z − c· y, so that the volume bound on
Ek will also turn into a bound on c· z − c· y.
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This set will be a scaling of the ice-cream cone ("cornetto") U = conv(z, (B(x0, r) ∩ {x : c·x = c·x0})).
Note that U ⊂ P by convexity and the fact thatB(x0, r) ⊆ P and U is full dimensional as z /∈ B(x0, r)∩{x :

c·x = c·x0} (otherwise, since B(x0, r) ⊆ P , the solution x+
r

∥c∥
c is feasible and has sup-maximal value).

We then consider U ′ = U ∩ {x : c·x ⩾ c· y}. This is U , scaled with scaling center z and with scaling ratio
c· z − c· y
c· z − c·x0

. Since U ∩ {x : c·x ⩾ c· y} ⊆ {x ∈ P : c·x ⩾ c· y} as U ⊂ P , we get U ′ ⊆ Ek for all y smaller

then its value in the kth iteration. In particular, this is true for the last iteration N and its corresponding y.

We have therefore vol(U ′) ⩽ vol(EN ) ⩽ e−
N

2d+2 vol(Bd(0, 1)). To compute vol(U ′), we use the scaling con-

struction to get vol(U ′) =

(
c· z − c· y
c· z − c·x0

)d

vol(U). Next, vol(U) depends entirely on the fixed c· z − c·x0
which we can bound by c· (z− x0) ⩽ ∥c∥∥z− x0∥ ⩽ ∥c∥2R (Cauchy-Schwartz, P ⊆ B(x0, R)) to get rid of
the purely theoretical z.

Finally, c· z − c· y ⩽ ∥c∥2Rvol(U)
d

√
e−

N
2d+2 vol(Bd(0, 1)), so that for N large enough (but still logarith-

mic), the right side becomes smaller the ε and therefore c· z − c· y ⩽ ε⇒ c· z − ε ⩽ c· y, as desired.

We now explain how to construct the ellipsoids. We start with ellipsoid Ek = Tk × Bd(0, 1) + ck given
by an inveritble linear transformation Tk of the unit ball and translated to its center c, and a separat-
ing hyperplane ck + v⊥k passing through ck with normal vk, so that K ⊂

{
x ∈ Ek : vtk(x− ck) ⩾ 0

}
.

To construct Ek+1, we simplify the situation with a coordinate change. We’ll build an ellipsoid E
that contains

{
y ∈ Bd(0, 1) : e

t
dy ⩾ 0

}
, so that for any for an orthonormal transformation Mk send-

ing ed to T−1
k (v), the ellipsoid Tk × Mk × E + c contains

{
x ∈ Ek : vtk(x− ck) ⩾ 0

}
and has volume

|det(Tk)||det(Mk)|vol(E) =
vol(Ek)

vol(Bd(0, 1))
× 1× vol(E).

Indeed,
{
x ∈ Ek : vtk(x− ck) ⩾ 0

}
⊆ Tk×Mk×

{
y ∈ Bd(0, 1) : e

t
dy ⩾ 0

}
+ck as for x ∈ Ek with vtk(x−ck) ⩾

0, we have x = ck + z with vtkz ⩾ 0 and z ∈ Tk × Bd(0, 1), so that T−1
k (v)·T−1

k (z) ⩾ 0 (sdp) and finally
ed·M−1

k T−1
k (z) = M−1

k T−1
k (v)·M−1

k T−1
k (z) ⩾ 0 (orthonormal), so that y = M−1

k T−1
k (z) ∈ Bd(0, 1) and

etdy ⩾ 0.

To build E, we write it as a
d−1∑
i=1

x2i + b(xd − t)2 ⩽ 1 and set the following conditions. First, t > 0. At

xd = 0, we want E to touch the unit circle in that hyperplane, which is part of
{
y ∈ Bd(0, 1) : e

t
dy ⩾ 0

}
, so

that a
d−1∑
i=1

x2i ⩽ 1−bt2 ⇔
d−1∑
i=1

x2i ⩽ 1: this can be done by setting a = 1−bt2 and requiring a = 1−bt2 > 0.

Next, we want the ellipsoid to contain ed on its boundary, so that b(1− t)2 = 1 so that we can fix a and b

with a choice of t <
1

2
. Finally, to get a hold on the volume, we note that a

d−1∑
i=1

x2i + b(xd − t)2 ⩽ 1 is the

preimage of Bd(−ted, 1) under diag
(

1√
a
,
1√
b

)
, so that E has volume

√
a
d−1

.
√
b.vol(Bd(0, 1)). We can

bound the volume to be√
1−

(
t

1− t

)2
d−1

.

√
1

(1− t)2
.vol(Bd(0, 1)) ⩽ e

1
2

(
1

(1−t)2
−(d−1)( t

1−t)
2
)
vol(Bd(0, 1))

with 1 + x ⩽ ex.
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It turns out that t =
1

d+ 1
is a good choice: it satisfies the conditions and provides a volume bound of

e−
1

2d+2 vol(Bd(0, 1)). Also, it has the property we tried to get intuitively: for x ∈
{
y ∈ Bd(0, 1) : e

t
dy ⩾ 0

}
we have

d∑
i=1

x2i ⩽ 1, so that a
d−1∑
i=1

x2i + (xd − t)2 ⩽ 1 + bt2 +
(
bt2 + b− 1

)
x2d − 2btxd and for t =

1

d+ 1
the

right side becomes 1 +
2d+ 2

d2
(
x2d − xd

)
which is less then 1 because xd ⩾ 0.

Ex.ElliComp: If the current ellipsoids center is x and the matrix defining its quadratic form is A and the
normal of the separating hyperplane is a, find the new center of the next ellipsoid in the ellipsoid method
explicitly in terms of this data.
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17.2 The affine scaling algorithm

In this section we discuss an algorithm that solves LPs and technically qualifies as an interior point method,
but one that relies of ellipsoids.
The idea of the affine scaling algorithm is that, knowing that linear optimization on ellipsoids have an
explicitly expressible (analytic ?) solution, one can successively inscribe ellipsoids in the polyhedron, by
letting the centers of the ellipsoids by the successive optima, thereby moving towards an optimum.

So we start with a standard form polyhedron

{
Ax = b

x ⩾ 0
where A has full row rank. To get a first

ellipsoid, we need it’s center y, which should be in the (relative) interior of the polyhedron (if we want

the inscribed ellipsoid to have the dimension of the polyhedron). This is the case for

{
Ay = b

y > 0
, which

contains the ball y +
(
kerA ∩B

(
0,
∥y∥∞
2

))
.

What kind of ellipsoid should we use ? To ease things, we’ll consider ellipsoids of the form E ∩ (Ax = b)
where E is an ellipsoid of the ambient space with center y. We want the optimum of the ellipsoid to
be attained in an interior point, so that we can proceed similarly in each iteration. This is achieved if
E ⊂ (x > 0), which is itself achieved if the axes of the ellipsoid are parallel to the grid, so that it’s

described by an expression of form
n∑

i=1

si(xi − yi)2 ⩽ 1, and the endpoints of the axes are in the strict

positive orthant x > 0. The latter condition is that for zi = min(xi : x ∈ E), zi > 0, or equivalently

(zi − yi)2 < y2i for all i. If we then choose an s ∈]0, 1[, we see that si =
1

sy2i
does the job.

So E has form
n∑

i=1

(xi − yi)2

y2i
⩽ s.

We then check that if x ∈ E, we have x > 0: otherwise, if there was an x and an index i form which

xi ⩽ 0, then xi−yi ⩽ (−yi) < 0 (as y > 0), so that
(xi − yi)2

y2i
⩾ 1 > s and we can’t have

n∑
i=1

(xi − yi)2

y2i
⩽ s.

We will solve min(c·x) st.


Ax = b

x ⩾ 0∑n
i=1

(xi−yi)
2

y2i
⩽ s

as a routine, since we can solve such problems ex-

plicitly. Note that the third constraint now makes the second redundant. The reason for which such a
problem is easily solved, is that ellipsoids are linear transformation of balls, and linear optimization on
balls is easy.
If we let Y = diag(yi), then E is described by

∥∥Y −1(x− y)
∥∥ ⩽ s. By changing variables to d = Y −1(x−y),

Ã = AY and c̃t = ctY , the optimisation problem reformulates to min (c̃· d) st.

{
Ãd = 0

d ∈ B(0, s)
.

The only component of the cost that is relevant to us is the one on the space Ãd = 0. So by completing the
columns of Ãtto a basis along it’s orthogonal ker Ã, we can decompose the cost c̃ = cp+cn where cp ∈ ker Ã
and cn ∈ ImÃt. So we can find writ cn = Ãtw for some vector w and cp = c̃− Ãtw = Y

(
c−Atw

)
as Y t =

Y . We can determine w by the requirement that Ãcp = 0⇔ AY 2
(
c−Atw

)
= 0⇔ w =

(
AY 2At

)−1
AY 2c

where
(
AY 2At

)
is invertible as the kernel of Y At is 0, for Y Atz = 0⇒ Atz = 0⇔ z = 0, as Y is invertible

(recall y > 0) and A has full row rank. If we have
(
AY 2At

)
z = 0, then zt

(
AY 2At

)
z = 0⇒

∥∥Y Atz
∥∥2 = 0,

so that z = 0, and ker
(
AY 2At

)
= 0.
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Intuitively min (c̃· d) over

{
Ãd = 0

d ∈ B(0, s)
is achieved in − s

∥cp∥
cp ∈ ker Ã ∩ d ∈ B(0, s). Formally, we

split c̃· d = cp· d+ cn· d and simplify c̃· d = cp· d, as d ∈ ker Ã and cn ∈ ImÃt. Cauchy-Schwartz provides

c̃· d > −∥cp∥.∥d∥ ⩾ −∥cp∥.s = cp·
(
− s

∥cp∥
cp

)
= c̃·

(
− s

∥cp∥
cp

)
.

TO CONTINUE.
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17.3 Solutions

Ex.ElliComp:
The ellipsoid is of form T (Bd(0, 1)) + x and has equation (y − x)tA(y − x) ⩽ 1 where A is symmetric
positive definite. We relate the two representations by noting that for y ∈ T (Bd(0, 1)) + x, we have
T−1(y − x) ∈ Bd(0, 1) so that (y − x)t

(
T−1

)t
T−1(y − x) and we see that

(
T−1

)t
T−1 = A is the positive

definite matrix we want. Conversely, if we’re given A, the by diagonalising it into A = P tDP where D is
diagonal with positive entries, then by setting T−1 =

√
DP does the job.

For the next ellipsoid in the ellipsoid method, we apply to the ellipsoid containing Bd(0, 1)∩{x· ed ⩾ 0} a

rotation bringing ed to
T−1(a)

∥T−1(a)∥
, and then we apply T and the translation by x.

(
0d−1,

1

d+ 1

)
will get

mapped to the new ellipsoids center. It first gets mapped to
1

d+ 1

T−1(a)

∥T−1(a)∥
and then

1

d+ 1

a

∥T−1(a)∥
.

Noticing that
∥∥T−1(a)

∥∥ =

√
at (T−1)t T−1a =

√
atAa, we get the desired result.
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18 Interior point methods

Following Boyd (Convex optimization) and Bertsekas (Convex optimization algorithms).

18.1 Gradient methods

The gradient method:
We develop the gradient method for an unconstrained convex minimisation problem with objective f ∈
C2 (Rn) with minimum value p∗ > −∞. The idea of gradient descent is based on the fact that the oppo-
site gradient −∇f(x) of f at x points in the steepest descending direction of f at x. We can therefore
construct a sequence given by xk+1 = xk −∇f(xk) to greedily minimise f . It turns out that we face an
immediate flaw: −∇f(x) points us in the steepest descending direction, but it doesn’t inform us how far
we should go in this direction. Consider for example a decent for function x 7→ x2 at point x0 = 1. If we
used update x1 = x0 − 2x0 = −1, followed by update x2 = x1 − 2x1 = 1, we see that this overestimation
leads the procedure to oscillate, instead of converging to the minimum 0.

So we modify the sequence to xk+1 = xk − tk∇f(xk) for scalars tk > 0 that we will choose to regu-
late the step size. Convexity of f alone isn’t much help in proving the decrease of objective as it translates
to f(y) ⩾ f(x) + ∇f(x)t(y − x), so that f(xk+1) ⩾ f(xk) − tk∥∇f(xk)∥2, which we can draw no good
conclusion from. We are looking for f(xk+1)−f(xk) ⩽ −tk∥∇f(xk)∥2 ⩽ 0, which we hope to achieve with
a clever choice of tk.

The sign of f(xk+1)− f(xk), which we seek, can be studied with the 2nd order truncated Taylor de-
velopment of f : f(xk+1)− f(xk) = −tk∥∇f(xk)∥2 + 1

2 t
2
k∇f(xk)t∇2f(zk)∇f(xk) for some zk ∈ [xk, xk+1],

depending on tk. To avoid dealing with zk’s dependence on tk, we can add an assumption to f : we assume
the condition that ∇f is M -Lipschitz on Rd, so that (y − x)t∇2f(z)(y − x) ⩽M∥y − x∥2 for all x, y and
z on the segment [x, y] (by finite difference and Cauchy-Schwartz).

With this assumption, we can bound−tk∥∇f(xk)∥2+t2k∇f(xk)t∇2f(zk)∇f(xk) ⩽
(
−tk +

M

2
t2k

)
∥∇f(xk)∥2

and finally with min
tk

(
−tk +

M

2
t2k

)
= − 1

2M
⩽ 0 achieved in tk =

1

M
, we can set tk =

1

M
for all steps, to

ensure that f(xk+1)− f(xk) ⩽ 0 .

However, before investigating convergence to the minimum of this descent, we remark that the setting

of tk =
1

M
requires us to know M explicitly. The problem is that finding M requires a specific analysis of

f or the solving of another optimisation problem (find the maximum of dt∇2f(z)d for d ∈ S1 and z ∈ Rd).

By a first order Taylor approximation, we can see that for small tk > 0, we have f(xk+1) ⩽ f(xk)− tk∥∇f(xk)∥2,
which ensures descent. Instead of finding such tk analytically, we can try to find them algorithmically, in
a procedure called backtracking line search.
Indeed, we can choose a b ∈]0, 1[ and check for f(xk+1) ⩽ f(xk)− bq∥∇f(xk)∥2 for increasing q = 0, 1, ...,
where tk is the first bq so that f(xk − bq∇f(xk)) ⩽ f(xk)− bq∥∇f(xk)∥2 holds. This will eventually hap-

pen for bq ⩽
1

M
, as when t ⩽

1

M
, we have

(
−t+ M

2
t2
)

⩽ − t
2
, so that f(xk+1)− f(xk) + bq∥∇f(xk)∥2 ⩽

− bq

2 ∥∇f(xk)∥
2 ⩽ 0.

The difference here is that M only ensure that this algorithm terminates, but we do not need to compute
M to find the step size. M only informs us on the runtime of the procedure (at this stage), but it isn’t
required to be known to run the procedure. We can actually drop the assumption that ∇f is M -Lipschitz
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on Rd and still prove termination of backtracking line search, but having a bound on tk, which we would
have by dropping the assumption, will prove useful in the convergence analysis.
In Boyd’s book, it’s argued that since the sequence (xk) is in the compact the sublevel set f(x) ⩽ f(x0),
∇f is naturally Lipschitz on that compact set, so the assumption isn’t needed. However, we needed M to
prove that the sequence is decreasing and hence in the sublevel set, so this is a circular reasoning.

We could perform backtracking line search at the start of the descent to find a good constant step size.
The advantage of recomputing the step size at each step with backtracking line search is that we can hope
f(xk − bq∇f(xk)) ⩽ f(xk)− bq∥∇f(xk)∥2 to be achieved for earlier q, depending on the current xk, which
would lead to greater steps.

We now turn to the question of whether the sequence (xk) constructed in this fashion will converge
to the global minimum of f . Note that the sequence become constant precisely when ∇f(xk) = 0, which
is where the global minimum is achieved.

To ensure convergence, we’ll have to add an assumption on f and b. First, our goal is to bound f(xk)−p∗,
which we can do with f(xk+1) − p∗ ⩽ f(xk) − p∗ − tk∥∇f(xk)∥2. The problem is that this "arithmetic"
bound leads nowhere, as we don’t know the behavior of

∑
k

tk∥∇f(xk)∥2. A first step would be to note

that tk = bq ⩽
1

M
⩽ bq−1, so that tk ⩾

b

M
and −tk∥∇f(xk)∥2 ⩽ −

b

M
∥∇f(xk)∥2.

Next, we can notice in the Taylor expansion f(y) − f(x) − ∇f(x)t(y − x) = (y − x)t∇2f(z)(y − x),
we can get a lower bound on the left by assuming that f is strongly convex, in the sense that
(y − x)t∇2f(z)(y − x) ⩾ m∥y − x∥2 for some constant m > 0. This is the case if, for example, ∇2f(z) is
positive definite on the compact sublevel set f(z) ⩽ f(x0).
In the newly obtained f(y) ⩾ f(x) + ∇f(x)t(y − x) +m∥y − x∥2, we can get a further lower bound by
minimising the quadratic right side for y. By convexity, it’s minimum when its gradient wrt. y is zero,

which means ∇f(x) +m(y − x) = 0 ⇔ y = x − 1

m
∇f(x). So we have f(y) ⩾ f(x) − 1

2m
∥∇f(x)∥2. We

can substitute y for for an antecedent of the achieved minimum of f to get p∗ ⩾ f(x)− 1

2m
∥∇f(x)∥2 ⇔

1

2m
∥∇f(x)∥2 ⩾ f(x)− p∗ for all x.

Finally, we can get a "geometric bound" by substitution of the previous bounds in f(xk+1) − p∗ ⩽

f(xk)− p∗ − tk∥∇f(xk)∥2 to get f(xk+1)− p∗ ⩽
(
1− 2bm

M

)
(f(xk)− p∗).

We have M ⩾ m by their definition and if we add the condition b <
1

2
, then c :=

(
1− 2bm

M

)
< 1 and

the bound f(xk)− p∗ ⩽ ck (f(x0)− p∗) proves convergence.

We can also combine tk∥∇f(xk)∥2 ⩽ f(xk) − f(xk+1) with tk ⩾
b

M
and

1

2m
∥∇f(xk)∥2 ⩾ f(xk) − p∗

to get f(xk)−p∗ ⩽
M

2bm
(f(xk)−f(xk+1)), which gives us a concrete criterion for stopping. We can iterate

until (f(xk)− f(xk+1)) ⩽ ε, a condition we cn easily check, and know that f(xk)− p∗ ⩽
M

2bm
ε. However,

if we want an explicit quality bound, we have to compute M and m.

SUM UP: f in C2 convex, minimum achieved, strongly convex and gradient lipschitz.
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The subgradient method:
The subgradient method is close to the of gradient decent, but works in a non-differentiable setting. If we
want to minimise the function f(x) without constraints in a differentiable setting, we have the intuition
that the gradient of f points in the steepest increasing direction. So intuition tells us that we can follow
the opposite of the gradient, we’re locally minimising the function. So our minimising sequence should
have form xk+1 = xk − akgk for scalars ak > 0 and (imitations of) gradients gk at xk.
If f is a convex function which has an attained minimum in x∗, then this is the unique minimum of the
function, and we’ll expect the sequence of xks to converge to x∗.
In this context, we’ll try to prove convergence by bounding ∥xk − x∗∥ by values converging to 0.
More can be said about ∥xk − x∗∥2, as we can distribute the dotproduct and applying the recursive defi-
nition: ∥xk+1 − x∗∥2 = ∥xk − akgk − x∗∥2 = ∥xk − x∗∥2 − 2 (xk − x∗) · akgk + ∥akgk∥2.

Induction yields ∥xk+1 − x∗∥2 = ∥x1 − x∗∥2 − 2
k∑

i=1

(xi − x∗) · akgk +
k∑

i=1

∥akgk∥2 and positivity provides

2

k∑
i=1

(xi − x∗) · akgk ⩽ ∥x1 − x∗∥2 +
k∑

i=1

∥akgk∥2.

Now we use the notion of subgradient: a subgradient of f at x is a vector g that verifies f(y) − f(x) ⩾
g· (y−x) for all y (it underestimates the differential). If gk is a subgradient of f at xi, then we can bound

2

k∑
i=1

(xi − x∗) · akgk ⩾ 2

k∑
i=1

ak (f(xi)− f (x∗)).

At this stage, we make a change in proof objective: we’ll try to show that (f(xk)− f (x∗)) converges to 0,

as we have an upper bound on those values. More precisely, we have the bound
k∑

i=1

ak (f(xi)− f (x∗)) ⩾

k∑
i=1

ak

(
min
i⩽k

f(xi)− f (x∗)
)

so that we actually have to keep track of the minimum value encountered so

far min
i⩽k

f(xi).

We have
(
min
i⩽k

f(xi)− f (x∗)
)

⩽
∥x1 − x∗∥2 +

∑k
i=1 a

2
k∥gk∥2

2
∑k

i=1 ak
. By making introducing the following con-

ditions, we get convergence:

• The subgradients gk are bounded (for example, f is a Lipschitz function)

• The sequence
k∑

i=1

a2k is bounded and
k∑

i=1

ak diverges to infinity (for example ak =
1

k
).

In that case,
∥x1 − x∗∥2 +

∑k
i=1 a

2
k∥gk∥2

2
∑k

i=1 ak

r−→
∞

0.

ADD STOP CRITERION AND QUALITY BOUND ???

Ex.?: We wich to use the subgradient method to minimise f(x) = max
i⩽m

(ai·x − bi). Show that f is

convex, find a subgradient for f at a given x and show that this family of subgradients is bounded, so that
we may apply the subgradient method.
As an example, in the context of statistical regression, we try to find an affine function f(x) = w·x+ w0

that estimates a real-valued parameter as a function of other parameters in Rn, given a set of observed
data (xi, yi)i⩽m. The goal is to find f so that f(xi) ≈ yi for all data points. We can get a good f by

minimising the total error E(w,w0) =

m∑
i=1

|w·xi+w0−yi|. Prove that E(w,w0) = maxi⩽m(ai· (w,w0)−bi)

for a certain choice of a and b.
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Finally, explain how one can use the subgradient method on this particular type of function as a routine
to solve LPs approximately under certain conditions.
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18.2 Newton method

Unconstrained case:
The Newton method is a descent method similar to the gradient method. We construct a sequence
(xk) that will converge to a point x∗ achieving the minimum p∗ of an objective f by a step of form
xk+1 = xk + dk. In gradient descent, we chose dk = −tk∇f(xk) based on he intuition that the gradient
points to the steepest ascent direction. This intuition comes from the fact that for d ∈ S1 and t > 0 small
enough, f(x+ td)− f(x) has the sign (and relative value wrt. t) of ∇f(x)td, for which Cauchy-Schwartz

∇f(x)td ⩽ ∥∇f(x)∥.∥d∥ implies that this quantity is maximum in d =
1

∥∇f(x)∥
∇f(x). What if we used

higher order approximations of f(x+ td)− f(x) to determine the descent direction ?

For small ∥d∥ > 0, we have f(x + d) − f(x) ≈ ∇f(x)td +
1

2
dt∇2f(x)d. We seek the d minimising

this second part, which is a convex function if ∇2f(x) is positive definite, which we assume, so that
the first order condition ∇f(x) + ∇2f(x)d = 0 ⇔ d =

(
∇2f(x)

)−1
(−∇f(x)), where invertibility is due

to positive definiteness. In this direction, we can estimate the improvement made to the objective by

f
(
x−

(
∇2f(x)

)−1∇f(x)
)
− f(x) ≈ −1

2
∇f(x)t

(
∇2f(x)

)−1∇f(x), by assuming f ∈ C2 so that ∇2f(x)

is symmetric.

Therefore, the Newton method performs updates of form xk+1 = xk − t
(
∇2f(x)

)−1∇f(x).
We’ll find the step size t with backtracking line search again, and use an exit condition of form
1

2
∇f(x)t∇2f(x)−1∇f(x) ⩽ ε, meaning that we stop when we expect the decrease in objective value to be

to insignificant.

Line search in this context consists in searching q = 0, 1, ... for a b ∈]0, 1[ such that f(xk+1) ⩽ f(xk) −
bq
1

2
∇f(xk)t∇2f(xk)

−1∇f(xk). This is because, by using a truncated Taylor development, we have

f(xk+1) = f(xk)−t∇f(xk)t∇2f(xk)
−1∇f(xk)+

1

2
t2∇f(xk)t

(
∇2f(xk)

−1
)t∇2f(zk)∇2f(xk)

−1∇f(xk), and

assuming again that ∇f is M -Lipschitz on Rd (as in gradient descent), we have bound f(xk+1)− f(xk) ⩽
−t∇f(xk)t∇2f(xk)

−1∇f(xk) +
1

2
t2M

∥∥∇2f(xk)
−1∇f(xk)

∥∥2.
Next, by assuming that f is strongly convex on Rd (as in gradient descent), we can use the fact that
∇f(xk)t∇2f(xk)

−1∇f(xk) =
(
∇f(xk)t

(
∇2f(xk)

−1
)t)∇2f(xk)

(
∇2f(xk)

−1∇f(xk)
)
⩾ m

∥∥∇2f(xk)
−1∇f(xk)

∥∥2,
to get bound f(xk+1) − f(xk) ⩽

(
M

2m
t2 − t

)(
∇f(xk)t∇2f(xk)

−1∇f(xk)
)
. Note that this also juistifies

our stopping criterion, as
(
∇f(xk)t∇2f(xk)

−1∇f(xk)
)

really does bound the objective decrement.

Following the arguments of gradient descent, for t ⩽
m

M
we have

(
M

2m
t2 − t

)
⩽ − t

2
, so that finally

f(xk+1)− f(xk) ⩽ −
t

2
∇f(xk)t∇2f(xk)

−1∇f(xk), which is the line search stopping criterion.

Note that when line search terminates, that is for q such that bq >
bm

M
, we can bound the decrement

by f(xk+1)− f(xk) ⩽ −
bm

2M
∇f(xk)t∇2f(xk)

−1∇f(xk).

Note also that by the previously used ∇f(xk)t∇2f(xk)
−1∇f(xk) ⩾ m

∥∥∇2f(xk)
−1∇f(xk)

∥∥2 ⩾ 0, we have

f(xk+1)− f(xk) ⩽ −
bm

2M
∇f(xk)t∇2f(xk)

−1∇f(xk) ⩽ 0, so this truly is a descent method.
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To analyse the algorithm, we consider the size of ∇f(xk)t∇2f(xk)
−1∇f(xk), which we expect to decrease.

If ∇f(xk)t∇2f(xk)
−1∇f(xk) ⩾ µ for a total of n consecutive iterations, then f(xk+1) − f(xk) ⩽ −

bm

2M
µ

and by telescopic sums and the bound f(x) ⩾ p∗, we have p∗ − f(x0) ⩽ −n bm
2M

µ, which reformultaes

to
2M (f(x0)− p∗)

bmµ
⩾ n. So for any µ, the case ∇f(xk)t∇2f(xk)

−1∇f(xk) ⩾ µ can occur only a finite

number of consecutive times.
There must then occur an iteration with ∇f(xk)t∇2f(xk)

−1∇f(xk) < µ.
In particular, for µ = 2ε, we know that the stopping criterion of our algorithm is reached, and that in
M (f(x0)− p∗)

bmε
iterations.

TO DO: quality bound and quadratic convergence etc...
ASSUMPTIONS: f achieves minimum, is convex and in C2, with positive definite hessian everywhere,
grad lipschitz and strong convex

Linear equation constraint:

When dealing with a general optimisation problem min f0(x) st.

{
gi(x) = 0

hi(x) ⩽ 0
, we can get simplify the

problem if there is a smooth parametrization of the solution space available. The problem is that such a
parametrization may not be available. But for problems of form min f0(x) st. Ax = b, we can describe the
solutions to Ax = b with a smooth parametrization. Indeed, the solutions to Ax = b can be obtained by
finding an specific solution x0 to it via Gaussian elimination, and determining a basis of ker(A), again with
Gaussian elimination. If B is a matrix who’s columns for a basis of ker(A), then all solution to Ax = b
are of the form x = By + x0, where y ∈ Rrank(A).
Then, the problem min f0(x) st. Ax = b is equivalent to min f0(By + x0) over Rrank(A).
To use the Newton descent on this problem, we must assume that f0 atteins a minimum on the solutions to
Ax = b, a condition that can’t be derived from f0. Indeed, consider the example of the convex f0(x, y) = x,
which doesn’t attain a minimum on the plane, to be minimised under linear constraints x = 0, where its
minimum everywhere. Convexity of f0 implies that of f0(By + x0) and so does smoothness.
The gradient is

(
∇f(By + x0)

tB
)t and the hessian is Bt∇2f(By+x0)B. If the gradient of f is Lipschitz, so

is
(
∇f(By + x0)

tB
)t, as

∥∥Bt∇f(By + x0)−Bt∇f(By′ + x0)
∥∥ ⩽

∥∥Bt
∥∥∥∥∇f(By + x0)−Bt∇f(By′ + x0)

∥∥ ⩽∥∥Bt
∥∥L∥B(y − y′)∥ ⩽

∥∥Bt
∥∥L∥B∥∥y − y′∥ by using matrix norms. Similarly, note that xtBt∇2f(By +

x0)Bx = (Bx)t
t∇2f(By + x0)(Bx) so that positive definiteness is conserved (as B is a basis), and we so

is strong convexity, by taking m to be the minimum of the strict positive x 7→ (Bx)t
t∇2f(By + x0)(Bx)

over the unit sphere.
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18.3 Barrier methods

Barrier methods allow to solve problems of form min(f0(x)) st. fi(x) ⩽ 0 for convex functions in {0, ...,m}.
They do so by an idea similar to Lagrange relaxation: including the constraints into the objective. Our
goal is to do this in a way that allows us to use the Newton method. One way of penalizing the violation
of constraints is by modifying the objective to f0(x)−

∑
i∈[m]

ln(−fi(x)), where ϕ(x) = −
∑
i∈[m]

ln(−fi(x)) is

called a barrier function.

Multiple problems arise from this modification: first, the constraints haven’t been taken care of, as∑
i∈[m]

ln(−fi(x)) is only defined for points verifying the constraints, second, the minimum might not be

close to one of the original function.
The second problem could lessened by introducing a large t > 0 and switching to objective tf0(x) +∑
i∈[m]

ln(−fi(x)) so that the main function to minimise is f0.

For us to apply the Newton method to tf0(x) +
∑
i∈[m]

ln(−fi(x)), certain assumptions must be made.

First, we will assume that the constraints fi(x) ⩽ 0 for i ∈ [m] form a bounded region: this will ensure
that tf0(x) +

∑
i∈[m]

ln(−fi(x)) has a minimum p∗, attained in the interior (fi(x) < 0 for i ∈ [m]).

Note that ϕ(x) = −
∑
i∈[m]

ln(−fi(x)) is convex, as a sum of compositions of the convex decreasing − ln and

the concave −fi. So that tf0(x) +
∑
i∈[m]

ln(−fi(x)) is convex as well. It’s also C2 if all fi are.

The gradient and hessian of ϕ(x) are∇ϕ(x) = −
∑
i∈[m]

1

fi(x)
∇fi(x) and∇2ϕ(x) =

∑
i∈[m]

1

fi(x)2
∇fi(x)∇fi(x)t−∑

i∈[m]

1

fi(x)
∇2fi(x). Since ∇fi(x)∇fi(x)t is positive definite unless ∇fi(x) = 0, and fi(x) < 0 in the inte-

rior of the feasible solution space, by assuming that each fi has a positive definite hessian and no critical
points in the interior of the feasible solution set (the latter not being required of f0), then the objective
tf0(x) +

∑
i∈[m]

ln(−fi(x)) has a positive definite hessian, as a sum.

PROBLEM: gradient not necessarily Lipschitz and no strong convexity...

We now deal with the problem that the introduction of the barrier function didn’t really take care of
the constraints, as they are now implicit in the domain of the objective. If we can find a solution x in the
interior of the feasible space, that is to say fi(x) < 0 for i ∈ [m], that we can investigate if the Newton
method can be adapted so as to never consider points outside of the domain. We can then try to find a
initial interior solution by solving a auxiliary problem, like we did for the simplex method.

We can modify the Newton method at the line search step as follows. If xk+1(t) is outside the do-
main (the feasible set, which one can check via function evaluation), we set f0(xk+1(t)) = +∞: this will
lead line search to reject points outside the domain, as we compare f0(xk+1(t)) = +∞ to a finite quantity.
The question is whether there is a q such that xk+1 (b

q) is in the domain, so that after a few values of q ,
we’re back to normal line search. The answer is yes, since xk is an interior point, so that for small enough
t, therefore also for large enough q, we have xk+1(t) = xk − t

(
∇2f(x)

)−1∇f(x) will be an interior point
(satisfy fi(x) < 0 for i ∈ [m], by continuity). It may then be that the first q for which the point is in the
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domain is not the first q for which the exit condition of line search is met. However, since the first q to

meet both criteria is greater then those meeting each criteria individually, we have bq >
bskm

M
for some

sk ⩾ 1.
PROBLEM: s depends on k, but we need a bound independent of k to proceed as in the proof of the
original Newton method.

One may wonder why one hasn’t used this modification for the regular Newton method to handle feasi-
bility with respect to constraints, without the barrier function. The point is that the barrier function will
prevent the gradient to point towards the "outside" of the feasible set, so that we expect line search to
reach feasible points quite quickly.

The immediate question is how the optimal solution of the barrier method differs from that of the orig-
inial problem. If x∗(t) denotes the solution outputted by the Newton method, then since Newton method
stops when the gradient is small (technically a quadratic form evaluated in the gradient, and strong con-
vexity implies the gadient is small as well), we have that the gradient of the barrier objective at x∗(t),∣∣∣∣∣∣∇f0(x∗(t))−

∑
i∈[m]

1

fi(x∗(t))
∇fi(x∗(t))

∣∣∣∣∣∣ ⩽ ε.

PROBLEM: is any part of this from Boyds book actually true ???
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18.4 Solutions

Ex.?:
f is a maximum over affine functions, so it’s convex (use linearity and bound).
For j maximising f(x) = max

i⩽m
(ai·x− bi), f(y)− f(x) ⩾ (aj · y− bj)− (aj ·x− bj) since f(y) = max

i⩽m
(ai· y−

bi) ⩾ (aj · y − bj). So f(y) − f(x) ⩾ aj · (y − x), so that aj is a subgradient for f at x. This sequence is
finite, so bounded.

For all choices of sign si ∈ {+1,−1}, we have
m∑
i=1

|w·xi+w0−yi| ⩾
m∑
i=1

si(w·xi+w0−yi), with inequality

being tight for at least on set of choices for si. So we have:

m∑
i=1

|w·xi + w0 − yi| = max
i ⩽ m

si ∈ {+1,−1}

(
m∑
i=1

si(w·xi + w0 − yi)

)

Note that there are 2m functions to check, so finding a subgradient takes exponential time in m.
We can use the subgradient method to solve a feasibility problem: for a system Ax ⩽ b, if the subgradient
method for f(x) = max

i
(Ai∗x− bi), finishes with a negative optimal value attained in x∗, then Ax∗− b ⩽ 0

and x∗ is a feasible point. We can then use binary search to solve the LP approximately if we know that

the objective values are in te range [l, u]. For a minimisation problem we solve

{
Ax ⩽ b

c·x ⩽ l+u
2

repeatedly,

setting u← l + u

2
when the system has a solution and l← l + u

2
if the subgradient method didn’t certify

feasibility (this might not imply actual infeasibility of the system), iterating till the distance u − l has
reached a arbitrarily set error tolerance.
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19 More convex optimization methods

19.1 Polyhedral approximation

Outer linearisation:
We recall the geometric version of convexity of a function, for the differentiable case. If f ∈ C1 is con-
vex, the f(y) ⩾ f(x) + ∇f(x)t(y − x). Now if we consider the epigraph of f , given by Cf = {(x, z) :
z ⩾ f(x)}, and the graph of f , given by Gf = {(x, z) : z = f(x)}, then we can interpret the plane
f(x) +∇f(x)t(y − x) = 0 as the tangent plane at x of f , and convexity means that the graph and epi-
graph are in the halfspace above this plane. Hence, the intersection of many such halfspaces contains the
graph and epigraph, and for such tangent halfspaces at a grid of points, we expect this polyhedron to
approximate the epigraph. We are then interested in the idea of minimising hight z on this polyhedron to
approximate minimising f .

We will deal with problems of form min f(x) st. Ax ⩽ b, where f ∈ C1 is convex and the polyhedron defined
by Ax ⩽ b is bounded. We will solve approximative LPs of the form min z st. z ⩾ f(xi)+∇f(xi)t(x−xi)
of i ∈ [k] and Ax ⩽ b. These LPs are bounded as Ax ⩽ b is, and will therefore always have a finite
minimum. We note that if for the minimum we have z∗ = f (x∗), where in general we have z∗ ⩽ f (x∗),
because f (x∗) ⩾ f(xi)+∇f(xi)t (x∗ − xi) for all i by convexity, so that (x∗, f (x∗)) is feasible for the LP,
then x∗ minimises f , as for any y such that Ay ⩽ b, (y, f(y)) is feasible for the LP by convexity of f and
hence f(y) ⩾ z∗ = f (x∗). If however we have z∗ < f (x∗), we get a finer approximation of the epigraph
by adding constraint z ⩾ f(xi+1) + ∇f(xi+1)

t(x − xi+1) where xi+1 = x∗. This constraint cuts off the
previous LP-minimser (x∗, z∗) from the feasible set. Note that we can solve the next LP with a simple
post-optimization step.

We start with a first LP for some x0 in the contraint polytope, and denote by (xk, zk) the sucessive
values of the kth LP solved, if z∗ = f (x∗) didin’t occure by chance until then. Note that zk will be an
increasing sequence, since (xk+1, zk+1) satisfies the constraints of the kth LP among two new ones, so that
zk ⩽ zk+1.

Convergence:

The sequence xk has a subsequence that converges to a minimiser of f on Ax ⩽ b.

Proof: Since the polytope Ax ⩽ b is compact, Bolzano-Weistrass guarantees a convergent subsequence
with limit deonted x∗, and we denote it with xk also, wlog. At iteration k, we have for all i < k,
by feasibility f(xi) + ∇f(xi)t(xk − xi) ⩽ zk. Now, for any x of the constraint polytope, we still have
zk ⩽ f(x): (x, f(x)) is feasible in the kth LP as its in the epigraph, hence p is grater then the minimum
of that LP. This is true for a minimiser x− of f on Ax ⩽ b, and for the limit x∗, which is also in the
polytope. So on the one hand, zk ⩽ f (x∗) so that lim

k→∞
zk ⩽ f (x∗), which exists as zk is increasing

an upper-bounded, and on the other hand lim
k→∞

(
f(xk−1) +∇f(xk−1)

t(xk − xk−1)
)
⩽ lim

k→∞
zk, where by

convergence lim
k→∞

(xk − xk−1) = 0, and by boundedness of the continuous ∇f on the compact polytope,

lim
k→∞

(
f(xk−1) +∇f(xk−1)

t(xk − xk−1)
)
= lim

k→∞
(f(xk−1) + 0) = f (x∗), also by continuity of f . Therefore

f (x∗) ⩽ lim
k→∞

zk ⩽ f (x∗) so that lim
k→∞

zk = f (x∗). However, we also have zk ⩽ f
(
x−
)

and therefore

f (x∗) = lim
k→∞

zk ⩽ f
(
x−
)
. Since x− was a minimiser, this implies that the limit x∗ is too.
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Inner linearisation:
Inner linearization isn’t exactly what we can expect from its name. Whereas in outer linearisation, we
exploited the fact that the graph of a convex function is above its tangent planes, we could think that
inner linearisation, uses the fact that the graph of a convex function is below its chords (simplices with
vertices on the graph).
However, inner linearisation uses sequential LPs to deal with a complex solution set, for an easy objective
function. The strength of inner linearisation is best illustrated by an example.

We consider an unconstrained multi-source convex flow problem with quadratic costs, and in a pecu-
liar form. Indeed, our variables will be indexed by paths! We’re given a graph G and a set of k pairs of
nodes si, ti, the source and target of commodity i ∈ [k]. The goal is to ship ri of this commodity along
the graph. If a total of c units of commodities, all commodities confused, use edge e to be shipped, the a
cost qec2 has to be paid, with qe ⩾ 0. This objective will have the effect of seeking "spread out" flows: for
example for two disjoint paths with same length l and q = 1, the cost of using one path only is lr2 while

that of splitting the commodities along the path is 2l
(r
2

)2
=

1

2
lr2, which is better.

We model the problem with the set of si-ti-paths Pi of the graph, by using variable xp to denote the
number of commodities to be shipped along the path p ∈ Pi. The set Pi may be exponential in the size
of the graph, but we’ll see that we never have to access it in its integrality in what follows. For now, we

remark that we have constraints x ⩾ 0 and
∑
p∈Pi

xp = ri, and objective
∑
i∈[k]

∑
e∈E

qe

 ∑
p∈∪Pi:e∈p

xp

2

.

More generally inner linerisation solves min f(x) st. Ax ⩽ b for a convex f ∈ C1 and a bounded polyhe-
dron Ax ⩽ b. The algorithm starts with a feasible vertex x0 of Ax ⩽ b. In the case of our flow problem,
we can use any tuple of si-ti-paths to ship the all the stock of the commodities along, that we find with
DFS for example. This is a vertex since all but one xPi ⩾ 0 is tight. At each iteration, we’ll produce an
iterate xj that will converge to a minimiser, as well as a set of vertices x′0, ..., x′j that will approximate the
solution space for the next iteration. We start with x′0 = x0.
We consider the last iterate xj , and start by approximating the objective by its gradient at that point
∇f(xj)t and solving the LP min∇f(xj)t(x − xj) st. Ax ⩽ b to get vertex x′j+1 of Ax ⩽ b (which we
assume bounded, so that a vertex solution exists). In the case of our flow problem, we don’t actually
have to solve an LP. Indeed, we see that the variables of different Pi for different i have no constraint in
common. The point is that now the objective is linear, so that the optimization problem is fully decou-

pled, as the solution of min
(
ctx+ dty

)
on

{
Ax ⩽ a

By ⩽ b
is the sum of the solutions of min ctx on Ax ⩽ a

and min dty on By ⩽ b. So for each commodity, we solve a linear objective over a simplex xPi ⩾ 0 and

1txPi = ri, who’s solution is at a vertex

{
xp = ri

xPi\p = 0
for some path p ∈ Pi of lowest cost. Since here

∇f
(
xj
)
=
∑

p∈∪Pi

∑
e∈p

2qe

 ∑
p′:e∈p′

xjp′

 ep (iterates are now in power notation), we see that the cost of

paths are the same as additive costs in a graph with edge-weights we = 2qe

 ∑
p′:e∈p′

xjp′

. So we’re actually

looking for a shortest path for each commodity, and we can use Dijkstra instead of running the LP on an
exponential number of constraints.

The next phase, in the general case, is to check if the iterate xj+1 of the problem for the linearised
objective happens to be optimal. We do this by checking the sign of ∇f(xj)t(x′j+1 − xj). Indeed, if
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∇f(xj)t(x′j+1 − xj) ⩾ 0, then since x′j+1 is a minimum of the LP ∇f(xj)t(x − xj) ⩾ 0 for all feasible x,
which is equivalent to the point xj being a minimiser of f (recall that the contrapositive holds: if there
was an x with strictly smaller objective, then for any ε, since f

(ε
2
x+

(
1− ε

2

)
xj

)
< f(xj) by convexity,

and f
(ε
2
x+

(
1− ε

2

)
xj

)
− f(xj) =

ε

2
∇f(xj)t(x′j − xj) + o(ε), so that ∇f(xj)t(x− xj) < 0 in the limit).

We postpone explaining how this step is done for the flow problem.
If however ∇f(xj)t(x′j+1 − xj) < 0, then we compute a next iterate xj+1 by solving min f(x) on x ∈
conv(x′0, ..., x

′
j+1), aka. min f

(
x′tλ

)
for λ in the (j +1)-diemensional standard simplex. We hop that the

structure of the problem allows for this step to be easy. Otherwise, we have to use interior point methods,
where the only advantage gained is that we decreased the dimension considerably, to j + 1. Note that
for the flow problem, the x′ have support of size k, so that x′tλ is not computationally prohibitive. Also
xj+1 is in that convex hull, so it has support of size at most (j + 1)k. We can now see that computing
∇f(xj)t(x′j+1 − xj) isn’t computationally prohibitive as (x′j+1 − xj) has support of size at most (j + 2)k.
We can keep track of the support when implementing the algorithm.

We remark that since ∇f(xj)t(x′j+1 − xj) < 0, the point x′j+1 could not have been in conv(x′0, ..., x
′
j),

since xj minimises f on that set, so that by convexity ∇f(xj)t(x− xj) ⩾ 0 for all x in it, so not x′j+1 in
this case. Hence, the convex hulls conv(x′0, ..., x

′
j) get larger an larger, as we add extreme points of Ax ⩽ b

at each step that didn’t produce an optimum. This provides termination, as we can’t add vertices to get
bigger hulls indefinitely: we assumed Ax ⩽ b to be bounded, so that this polytope has finitely many
vertices. However, with this argument we must expect possible exponential runtime.
As a final remark, note that xj only has to approximately minimise f on conv(x′0, ..., x

′
j), so that iterior

point algorithms may be used, since ∇f(xj)t(x′j+1 − xj) < 0 is a strict inequality. The error of interior
point method must however be smaller that the variation of ∇f(x)t(x′j+1 − x).

Duality:
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19.2 Proximal algorithms

Proximal algorithms are the equivalent to regularisation or preconditioning from numerics.
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19.3 Solutions

257



20 Lattice geometry methods for ILP

20.1 Geometric integer programming

Recall the problem of solving the IP max c·x st. Ax ⩽ b, x ∈ Zn. As was done in the first versions of
the ellipsoid method, on can (approximately) solve this optimization problem by applying binary search
and solving feasibility problems as subroutine. For estimated bounds l ⩽ min (c·x : Ax ⩽ b, x ∈ Zn) ⩽
max (c·x : Ax ⩽ b, x ∈ Zn) ⩽ u, we can apply binary search on [l, u] by asking at each step if we can find,
for current midpoint-value m, a point such Ax ⩽ b, x ∈ Zn and c·x ⩾ m.

The algorithm we present to solve the feasibility problem, known as Lenstra’s algorithm, is based on
multiple observations. All full-dimensional bounded polyhedra contain a maximum volume ellipsoid. If
we have a way of finding this ellipsoid and a way of finding an integer point in an an ellipsoid, then we
could compute this ellipsoid for the polytope and check if it has an integer point. If it doesn’t, the brilliant
idea is that by slicing up the polytope by hyperplanes so that all integer points of the polytope are on
one of these hyperplanes, we can perform the same operation recursively on the polytopes that are the
intersections of the initial polytope and the hyperplanes slicing it (which we consider in their affine hull
to get full-dimensionality). If at some stage, an integer point is found, then it’s an integer point of the
initial polytope and otherwise, the recursion proceeds until the hyperplanes have dimension zero (they’re
points). In such a worst case, we’ve reached the integer points of the polytope, and if none of them are
returned, it must be the case that the polytope had no integer points in the first place.
Finally, if we have a clever way of slicing the polytope, then not too many subproblems are created at
each step, and the runtime of the algorithm (despite being exponential) will be relatively good.
In the algorithm we’ve described, we can replace the search for a maximum volume ellipsoid by that of
a maximum volume ball. This simplifies the subroutine, as we know that finding a maximum volume
ellipsoid requires solving a convex program, while finding a maximum volume ball requires solving a linear
one. But in that case, we’ll loose the bound on the number of sub-problems created when slicing.

The algorithm exploits the following sub-routine, provided by the proof of Khinchine’s Flatness Theo-
rem (or a variant of it...):

Algorithm: (Khinchine-algorithm)
Input: a polytope in H-description Ax ⩽ b (with integer entries).

Output: a solution Ax ⩽ b, x ∈ Zn or a direction c ∈ Zn so that all integer points of the polytope Ax ⩽ b
are on the union of the hyperplanes c·x = d where d ∈ [min(c·x : Ax ⩽ b),max(c·x : Ax ⩽ b)] ∩ Zn, and
d takes at most 1 + n.2O(n

2) values.

With this algorithm we can describe the main one that solves feasibility:

Algorithm:
Input: a polytope in H-description Ax ⩽ b (with integer entries).

Procedure: As the algorithm is recursive, we’ll denote it by Alg(A, b). Alg(A, b) starts by apply-
ing Khinchine’s algorithm on Ax ⩽ b. If a solution verifying Ax ⩽ b, x ∈ Zn is found, we return it
and stop. Otherwise, we run the algorithm recursively on the slices of the polyhedron given by c, by

using Alg

 A
c
−c

 ,

 b
d
−d

. If one of the recursive calls returns a solution, then we return this solu-
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tion, as it’s also one for Ax ⩽ b. Otherwise, we return the message that the polytope has no integer points.

Output: a solution Ax ⩽ b, x ∈ Zn or the message that the polytope has no integer points.

As we’ve mentioned for Khinchine’s algorithm, all integer points of the polytope must be in one of the
hyperplanes given by c. So if the algorithm works for one dimension less then the current dimension, and
none of the sub-applications of Khinchine’s algorithm return integer points, then none of the hyperplanes
given by c contain integer points, so that the polytope had no integer points in the first place.

If T (n) is the worst case runtime of the algorithm in dimension n, then in the recursive call we get
runtime T (n− 1) for each slice, of which Khinchine’s algorithm guaranteed there be at most 1 + n2O(n

2),

So T (n) ⩽ T (n − 1)n2O(n
2) and solving this formula we get T (n) ∈ O

(
n∏

i=1

i2O(i
2)

)
= O

(
2O(n

3)
)

as

n∑
i=1

i2 = O
(
n3
)

and n! ⩽ (2n)n = 2O(n
3).
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20.2 Lattices

EXPLAIN LATTICES... (unimodular transformations and the, Hermite normal form)

Definition:
A (full-rank) lattice is AZn for some invertible real matrix A, or more precisely the integer combinations
of the vectors A∗i.

The vectors of A are said to for a basis of the lattice AZn. A lattice can have multiple basis. For example,

the lattice spanned by
(
1

4

)
and

(
−1
1

)
is also spanned by

(
0

5

)
and

(
−1
6

)
, because we can express an

integer combination a

(
1

4

)
+ b

(
−1
1

)
= (2a − b)

(
0

5

)
+ (b − a)

(
−1
6

)
and conversely a

(
0

5

)
+ b

(
−1
6

)
=

(a+ b)

(
1

4

)
+ (a+ 2b)

(
−1
1

)
, so that integer combinations are in a one-to-one correspondence.

A lattice can theoretically be spanned by more vectors then a basis in given dimension allows. For

example
(
1

0

)
,

(
0

1

)
and

(
0√
2

)
is a basis of the lattice it spanns, as the only integer combination providing

0 is the one with all 0 scalars, as
√
2 is irrational.

Definition:
For any full rank lattice AZd (in the sense that A represents a basis), it’s dual lattice is (A−1)tZd.
We also have

(
A−1

)t Zd =
{
x ∈ Rd : x· y ∈ Z,∀y ∈ AZd

}
The name is well chosen: the dual of the dual lattice is the initial lattice, as transposition and inversion
commute. To see that

(
A−1

)t Zd ⊆
{
x ∈ Rd : x· y ∈ Z,∀y ∈ AZd

}
, write x =

(
A−1

)t
z and y = Aw for

integer vectors z and w and compute xty = ztA−1Aw = ztw ∈ Z.
Conversely, to see

(
A−1

)t Zd ⊇
{
x ∈ Rd : x· y ∈ Z, ∀y ∈ AZd

}
, take x in the latter set and write it in the

basis that
(
A−1

)t defines as x =
(
A−1

)t
z. Our goal is to prove that z is integer. So by taking y = Aei,

the identity x· y ∈ Z becomes ztei = zi ∈ Z, which gets us to the goal.

INCLUDE: Lattices with space definition, existence of bases, ref Barvinok

260



20.3 Khinchine’s flatness theorem and algorithm

INTERNAL NOTE: case that polytope is not full dimensional, but dim− 1 dimensional. Find affine hull,
find integer points in hull via Hermite form, solve for different polytope as in Rothvoss p.37. ALSO, my
khinchine includes the maximum volume ellipsoid stuff inside it.

We first reduce the dimension by placing the polytope in its affine hull and parameterize the latter.
As we’ll be interested in the integer points of the polytope and the affine hull of the polytope is described
by t+ker(M), we look for the integer point solutions to Mx =Mt. As in all cases we run the algorithm,
the entries of the H-description of the polytope are integer (note that the c we’ll slice the polytope along
has integer entries), and as we can assume that t is integer under the condition that ker(M) contains an
integer point, we con solve Mx = Mt by computing the Herminte normal form of M . The solutions will
then by a lattice spanned by basis B, translated by t.
So we’re looking for the the integer points of A(By + t) ⩽ b ⇔ (AB)y ⩽ (b − At) where y is in a lower
dimensional vector space.

So we can assume that the polytope is full dimensional and we’ll keep denoting it by the system Ax ⩽ b
(instead of the more cumbersome (AB)y ⩽ (b−At)).
The next reduction is a less obvious one: we’ll prove the flatness theorem for ellipsoids instead of poly-
topes, and handle the polytope case with inscribed and circumcribed ellipsoids to the polytope.
So let’s first deal with:

Algorithm: (Khinchine-algorithm for ellipsoids)
Input: an ellipsoid a+ T (B(0, 1)) where T is invertible.

Output: an integer point of the ellipsoid or a direction c ∈ Zn so that all integer points of the el-
lipsoid are on the union of the hyperplanes c·x = d where
d ∈ [min(c·x : x ∈ a+ T (B(0, 1))),max(c·x : x ∈ a+ T (B(0, 1))] ∩ Zn, and d takes at most 2O(n

2) values.

Proof: We’re looking for an integer point x in a+ T (B(0, 1)), or equivalently, an lattice point of T−1Zn

in the ball B
(
T−1a, 1

)
. Rewriting T−1 = B and T−1a = d, a basic idea would be to solve Bx = d and

consider the candidate lattice point B⌊x⌋, which we expect to be in the ball as it’s close to the center. So
we look at ∥B⌊x⌋−d∥ = ∥B(⌊x⌋−x)∥ and in order to be able to give a condition for which this is ⩽ 1, we

bound it by
n∑

i=1

|⌊x⌋ − x|.∥B∗i∥ ⩽ n.∥B∗i∥∞ (product, triangular inequality, fractional parts, maximum).

The condition ∥B∗i∥∞ ⩽
1

n
therefore implies that B⌊x⌋ is the lattice point we were looking for, so that

⌊x⌋ ∈ a+ T (B(0, 1)).
TO FINISH
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20.4 The LLL-algorithm

For a lattice spanned by B, we’re interested in finding the non-zero lattice vector of smallest euclidean
norm.

Gram-Schmidt procedure:
The Gram-Schmidt procedure takes as input base B of Rn and returns an orthogonal base B∗ as output,
which is based off of B. The idea is that of successively deleting the components of basis vectors in previous
basis vectors.
We start with b∗1 := b1, and define b∗2 := b2 − s1,2b∗1 with s1,2 chosen so that b∗2· b∗1 = 0, which is achieved

by s1,2 =
b2· b∗1
∥b∗1∥

2 (use combine the two equations and solve for s1,2). We can iterate this by setting

b∗j := bj −
∑
i<j

si,jb
∗
i , choosing si,j =

bj · b∗i
∥b∗i ∥

2 so as to get b∗j · b∗i = 0 for all i < j (recalling that we inductively

have b∗k· b∗i = 0 for all i, k < j).

We now turn to some interesting facts about the Gram-Schmidt procedures outcome. We first point
out that det(B) = det (B∗), as we can obtain B∗ from B by operations on the columns (recall multilinear-
ity of the determinant). Next, we can compute det (B∗) quite easily with using (B∗)tB∗ = diag

(
∥b∗i ∥

2
)

(the dot-product matrix and orthogonality), so that on the one hand det
(
(B∗)tB∗) = (

n∏
i=1

∥b∗i ∥

)2

and

on the other det
(
(B∗)t

)
det (B∗) = det (B∗)2. We therefore have det (B∗) = ±

n∏
i=1

∥b∗i ∥.

Orthogonality of B∗ carries many other interesting properties with it. Here’s a crucial one for what’s to
come:

Proposition:
For all lattice vectors x ∈ BZn\{0}, ∥x∥ ⩾ min

i
(∥b∗i ∥).

Proof: We write x ̸= 0 in terms of B∗ by substituting bj = b∗j +
∑
i<j

si,jb
∗
i . An interesting fact is that the

multiple of bn in x is the same as that of b∗n, since b∗n is introduced in the last substitution. In general,

for x =
n∑

i=1

yibi and x =
n∑

i=1

zib
∗
i after substitution, for j = max(i : yi ̸= 0) (there is such an index as as

x ̸= 0), b∗j appears only one in a substitution, so that zj = yj for that index, and non of the b∗i appear in
the expression of for i > j.

Now by Pythagoras for x =

j∑
i=1

zibi, we have ∥x∥2 =

j∑
i=1

|zi| ∥b∗i ∥
2 (compute x·x and use orthogonality),

so that in particular, ∥x∥2 ⩾ |zj |
∥∥b∗j∥∥2 and since zj = yj ∈ Z\{0}, this means ∥x∥ ⩾

∥∥b∗j∥∥ ⩾ min
i

(∥b∗i ∥).

This proposition sais that for OPT = min (∥x∥ : x ∈ BZn\{0}), we have OPT ⩾ min
i

(∥b∗i ∥). As we
know form the section on approximation algorithms, bounds like this one are useful in showing the nature
of approximation algorithms. If we combine this with remark of great importance, which is that b∗1 = 1.b1
is a lattice vector, then if we have some way of finding a basis of the lattice and on ordering of it (as
the Gram-Schmidt procedure depends on an ordering of the basis) for which ∥b∗1∥ ⩽ α ∥b∗i ∥, then we have
αOPT ⩾ ∥b∗1∥ and returning b1 provides an α-approximation algorithm. This is what we now investigate:
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The LLL-algorithm:

The first thing we’ll investigate is how permuting the basis vectors affects the the Gram-Schmidt or-
thogonalisation. In fact, it turns out that we can do a lot with the study of the exchange of bi and
bi+1.

How do we find a coefficient-reduced basis of the lattice ?
Starting from a basis B, we which to find a basis B̃ that spans the same lattice and who’s Gram-Schmidt
orthogonalisation is the same as Bs, so that B∗ =

(
B̃
)∗

.
The idea is that the Gram-Schmidt orthogonalisation shouldn’t be affected if we replace some basis vectors
of B by linear combinations of previous basis vectors, as these will be deleted when deleting the compo-
nent along the previous vectors during the procedure. In order for the coefficients of the Gram-Schmidt
orthogonalisation to be small, since they depend on dot-products, an idea would be to use the previously
described linear combinations to get a basis that is "as orthogonal as possible", so that the dot-products
are small.

Let’s investigate the simplest such operation: from B, we’ll construct B̃ = update(B, l, k, q) so that

b̃i =

{
bk + qbl if i = k

bi else
, for l < k and q ∈ Z. We see that B̃ is a basis of the same lattice, since

we can re-express
n∑

i=1

cibi = (cl − ckq)bl + ck(bk + qbl) +
∑
i ̸=l,k

cibi (and coefficients remain integral) and

n∑
i=1

cib̃i = 0 ⇔ (cl + ckq)bl +
∑
i ̸=l

cibi = 0 and by linear independence of basis B, first ci = 0 for i ̸= l, so

that ck = 0 and finally clckq = 0⇒ cl = 0.

Now, we investigate the effect on the Gram-Schmidt orthogonalisation. For i < k, we produce the
same vectors, as only previous vectors are involved in each step, so b̃i

∗
= b∗i for i < k. To compare the

different orthogonalisations at k, we write b̃k = bk + qbl = b∗k +
∑
i<l

(sik + qsil)b
∗
i + (slk + q)b∗l +

k−1∑
i>l

sikb
∗
i

by substituting the Gram-Schmidt orthogonalisation of B. Subtracting b̃k = b̃k
∗
+

k−1∑
1

s̃ik b̃i
∗
, we get

b̃k
∗
− b∗k =

∑
i<l

(sik + qsil − s̃ik) b∗i +(slk + q − s̃lk) b∗l +
k−1∑
i>l

(sik − s̃ik) b∗i , as b̃i
∗
= b∗i for i < k. By orthog-

onality of the Gram-Schmidt basis and b̃i
∗
= b∗i , we deduce that all coefficients of the right side must be

0 (take a dot-product with b̃i
∗
= b∗i ) and finally that b̃k

∗
= b∗k.

Then b̃i
∗
= b∗i for i > k, since previous vectors are involved in each step of Gram-Schmidt orthogonalisa-

tion and all previous vectors were the same for both basis. So the basis produce the same Gram-Schmidt
orthogonalisation.

An improtant remark is that for this operation sik = s̃ik for i > l. For the same reasons that we
had b̃i

∗
= b∗i for i < k, we also have sij = s̃ij for i < j < k. In the figure below, we’ve represented the

situation: we represent the double indices by a square grid, where the red, blue and back squares represent
the indices used of the sij . On the left, we see the the operation has changed the blue and black squares,
whereas the red ones remain unchanged.
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In fact the blue square was changed to s̃lk = slk + q. By applying this update(B, l, k, q) iteratively to the
basis with values of k and l changing as described on the right of the figure, we make sure that the value
slk is translated by q and won’t be affected ever again in the process. So to get small values of slk, we let
q = −⌊slk⌋ or q = −⌊slk⌋ − 1, depending on which is closer to slk, in that iteration. This will be the final

value of slk. It has the important property that |slk| ⩽
1

2
, as we can’t simultaneously have slk−⌊slk⌋ >

1

2

and ⌊slk⌋ + 1 − slk >
1

2
(else their sum is 1 > 1). So the final basis we obtain after

(
n

2

)
iterations of

update(B, l, k, q) is coefficient reduced.
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20.5 Solutions
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21 Semidefinte programming and applications in combinatorial opti-
mization

21.1 Max-cut and the Goemans-Williamson algorithm

Recall the maximum cut problem: we’re given a graph (V,E) and edge weights w and seek a bipartition
of vertices into A ⊆ V and V \A so that the total weight of edges with endpoints in either of the partition
sets

∑
e∈δ(A)

we is maximum.

In a previous exercise, we modeled this problem (for positive weights) as an IP and found a randomised
1
2 -approximation algorithms for the max-cut problem.
As a brief remark, we treat the case in which the weights are allowed to be negative. For positive weights

on edge {u, v}, we keep constraints

{
xuv ⩽ yu + yv

xuv ⩽ 2− (yu + yv)
, but for negative weights, we use constraints

xuv ⩾ |yv − yu| ⇔

{
xuv ⩾ yu − yv
xuv ⩾ yv − yu

. This is because |yv − yu| indicates if the edge {u, v} is in the cut

and because for the maximum solution, xuv = |yv − yu|, for we could decrease it otherwise, as it appears
in this constraint only, which would increase the objective (negative weight), contradicting maximality.

Alternatively, we can try to formulate the max-cut problem as a (non-linear) IP. We represent a bi-

partition of vertices by variables yv ∈ {−1, 1} for v ∈ V . Then,
1

2
(1 − yuyv) =

{
1 : {u, v} ∈ δ(A)
0 : else

indicates whether edge {u, v} is in the cut, so that the objective can be written as W (A) =
∑

e∈δ(A)we =
1
2

∑
(u,v)∈V 2 w(u,v)(1 − yuyv). We can relax this to the following vector program (:=VP), which we’ll see

how to solve in a few paragraphs:

Problem: Max-cut VP relaxation

max 1
2

∑
(u,v)∈E w(u,v)(1− xu·xv)

st. xv ∈ S|V | =
{
x ∈ R|V | : ∥x∥2 = 1

}
for all v ∈ V

This is indeed a relaxation, as for all feasible solutions to the IP y ∈ {−1, 1}V , we can consider the feasible
solutions xv = (yv, 0) of the VP, and remark that since xu·xv = yuyv, the objective value of the VP is that
of the IP. By denoting by zV P the optimal value of this problem and zMC that of max-cut, we therefore
have zV P ⩾ zMC . Before discussing how VPs can be solved, we’ll talk about the Goemans-Williamson
algorithm.

The Goemans-Williamson algorithm produces a bipartition for the max-cut problem from the optimal
solution x to the VP as follows: we get a random r ∈ S|V | with uniform distribution and partition the
vertices into A = {u : xu· r ≥ 0} and B = V \A. In visual terms: we partition the sphere along a random
hyperplane and partition vertices according to the hemisphere their corresponding VP variable is in.
We now analyse the quality of such a bipartition. If W denotes the random variable that is the weight of
such a bipartition, it’s expectation is E(W ) =

∑
(u,v)∈V 2

wuvP (sign(xu· r) ̸= sign(xv· r)) where

P (sign(xu· r) ̸= sign(xv· r)) is the probability that the dot-products xu· r and xv· r have the opposite sign
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(so that {u, v} is in the cut).

We can compute P (sign(xu· r) ̸= sign(xv· r)) =
1

π
arccos(xu·xv) as follows. If xu and xv are colinear,

since they’re unit vectors, they’re either equal or opposite and in both cases the equality holds (as we may
assume that xv· r ̸= 0 for all vertices, for the opposite event has probability 0). Otherwise, we can simplify
the situation by considering the orthogonal projection of r on V ect(xu, xv), normalised to puv(r), which
is uniformly distributed on unit circle of V ect(xu, xv) (to see this, keep r multivariate Gaussian, use its
rotational invariance and the fact that its marginals are Gaussian as well, then conclude by normalising).
Indeed, sign(xv· r) = sign(xv· puv(r)) and similarly for u, so that we can picture the situation with our
figure below, representing the plane V ect(xu, xv).

O

B

D

C

A xu

xv
θ

θ

θ

The event who’s probability we’re computing then occurs precisely when puv(r) is in the sectors of angles
∠AOB and ∠COD, which have measure θ. By right angle rotations, we see that this is the angle between
xu and xv, so that xu·xv = cos θ, and since the event occurs with probability 2θ

2π (uniform distribution),
the result follows.

Now that we’ve established E(W ) =
∑

(u,v)∈E

wuv
1

π
arccos(xu·xv), we turn to finding a bound α on the

ratios
E(W )

zMC
⩾
E(W )

zV P
⩾ α to judge the quality of the randomised approximation algorithm. For this, we

need:

Lemma:

1

π
arccos(y) ⩾ α

1

2
(1− y)

for α := min
0⩽x⩽π

(
2x

π(1− cos(x))

)
> 0, 87856

Proof: It’s true for any α for y = 1, where both expressions are 0, so we can let α = min

(
2arccos(y)

π(1− y)

)
over [−1, 1[. With the change of variable y = cos(x), this is α = min

(
2x

π(1− cos(x))

)
. The function

f(x) =
2x

π(1− cos(x))
has derivative f ′(x) =

2

π

(1− cos(x))− x sin(x)
(1− cos(x))2

and using some more calculus one

can find the desired result. □
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Now, for positive weights wuv ≥ 0 we can use the first inequality of the lemma to get
∑

(u,v)∈E

wuv
1

π
arccos(xu·xv) ⩾

α
∑

(u,v)∈E

wuv
1

2
(1− xu·xv) So in this case E(W ) ≥ αzV P and finally 1 ⩾

E(W )

zMC
⩾ α.

Theorem: Quality of the Goemans-Williamson algorithm

For positive weights zMC ⩾ E(W ) ⩾ αzMC , where α := min
0⩽x⩽π

(
2x

π(1− cos(x))

)
> 0, 87856.

The Goemans-Williamson algorithm requires solving a vector/semidefinite programm, which we therefore
now discuss.

Definition:
A vector program (VP) is an optimization problem of form:

max
∑
i,j
ci,j(vi· vj)

st. vi ∈ Rd and
∑
i,j,k

ai,j,k(vi· vj) = bk all i ∈ [d] and k in a finite set.

A semidefinite program (SDP) is an optimization problem of form:

max
∑
i,j
ci,j(mi,j)

st.
∑
i,j,k

ai,j,k(mi,j) = bk for all k in a finite set

and for M = (mi,j) ∈ Rd×d, M t =M and SpecC(M) ⊂ R+

⇔ M a symmetric positive semidefinite matrix.

One can solve a VP by solving the SDP with identical coefficients by recalling that on can diagonalise
M = P−1DP with P−1 = P t and all Dii ⩾ 0, so that for V =

√
DP , we obtain M = V tV , and we

can then set vi = V∗i to get the corresponding solution to the VP. This factorisation and the fact that
a product V tV is always symmetric positive semidefinite imply that infeasiblity and unboundedness also
translate between programs. Cholesky factorisation computes V in O(d3) time, but requires taking square
roots, so it’s numerically inaccurate.

SDPs can be solved in with the ellipsoid method.

TO COMPLETE: Better treatment in the gupta o’donnell script, max cut fron Korte Vygen, and semidef
stuff from Grötschel Lovasz Schrijver, for separation oracle.

The SDP relaxation of max-cut is max
1

2

∑
{u,v}∈V 2

w{u,v}(1 − yuv) for spd matrix Y = (yuv)V 2 , where

we’ve set w{u,v} = 0 if {u, v} /∈ E, and constraints yvv = 1 for all v ∈ V and |yuv| ⩽ 1 for all {u, v} ∈ V 2,
due to the variables representing dot-products of unit vectors. If we order the vertices from 1 to |V |, we
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see that Y = I +
∑

1⩽i<j⩽|V |

yij(Eij +Eji) for canonic basis matrices (Eij), so that the affine hull is
(
|V |
2

)
dimensional. Separating hyperplanes in |V |2 dimensional space become separating hyperplanes in

(
|V |
2

)
dimensional by inserting yvv = 1 and yuv = yvu.

We know that the feasible set is contained in the ball B

(
0,

√(
|V |
2

))
(in the affine hull), as Y = I is

feasible and |yuv| ⩽ 1. Showing that 0 is an interior point of the feasible set is a bit harder.
Positive definiteness translates to ztY z ⩾ 0 for all z ∈ R|V |, which for or space means ztY z =

∑
1⩽i,j⩽|V |

ziyijzj =∑
1⩽i⩽|V |

z2i + 2
∑

1⩽i<j⩽|V |

ziyijzj ⩾ 0. We want to guarantee this for a small neighbourhood of 0. We’ll try

to exploit 0 ⩽ (zi − zj)2 = z2i + z2j − 2zizj to get this conclusion. To get this expression in a sum over
1 ⩽ i < j ⩽ |V |, we must have (|V | − 1) times the term z2i (the number of pairs terms zizj contain-

ing zi). Our goal then being to bound ztY z =
1

(|V | − 1)

∑
1⩽i<j⩽|V |

(
z2i + z2j

)
+ 2

∑
1⩽i<j⩽|V |

ziyijzj =, we

could use ziyijzj ⩾
−1

(|V | − 1)
|zizj |, which would allow for ztY z ⩾

1

(|V | − 1)

∑
1⩽i<j⩽|V |

(
z2i + z2j − 2|zizj |

)
=

1

(|V | − 1)

∑
1⩽i<j⩽|V |

(|zi| − |zj |)2 ⩾ 0, the desired result. This condition can be obtained by using the inter-

mediate ziyijzj ⩾ −|ziyijzj | ⩾
−1

(|V | − 1)
|zizj | to get the equivalent condition |yuv| ⩽

1

(|V | − 1)
.

To conclude, if y ∈ B
(
0,

1

(|V | − 1)

)
, then |yuv| ⩽

1

(|V | − 1)
(as ∥.∥2 ⩾ ∥.∥∞), so in particular |yuv| ⩽ 1

and Y is sdp by the previous paragraph. So B
(
0,

1

(|V | − 1)

)
is contained in the feasible set.
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21.2 The Lovász theta function

Gupta O’Donnell script, among others, like Gärtner Matousek
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21.3 Hazan’s algorithm

We’ll now discuss an interior point method for solving SDP’s of form maxC ◦X st. X spd, tr(X) = 1,
and Ai ◦X ⩽ bi for i ∈ [m], where the Ai and C are sdp and we use notation C ◦X =

∑
i,j∈[n]

cijxij .

It performs binary search on the objective values, solving feasibility problems at each step. We’ll soon
see that SPDs in this form are always bounded, with upper bound λmax(C) the largest eignevalue of
C, which we can compute, for example with the power method. So binary serach can be performed on
[λmin(C), λmax(C)].

To solve feasibility problems of finding an X that is spd such that tr(X) = 1 and Ai ◦ X ⩽ bi for

i ∈ [m], we’ll use a barrier method. We define penalty f(X) =
1

K
ln

 m∑
i∈[m]

eK(Ai◦X−bi)

 for some K > 0

that we’ll choose later, a try to solve min f(X) st. X spd and tr(X) = 1.

This objective is convex, as the composition of the convex g(y1, ..., ym) =
1

K
ln

 m∑
i∈[m]

eyi

 with an affine

map. To see that g is convex, we compute the Hessian with ∂ijg(y) =
−eyi+yj

K
(∑m

k∈[m] e
yk

)2 for i ̸= j and

∂iig(y) =
eyi
(∑m

k∈[m] e
yk
)
− e2yi

K
(∑m

k∈[m] e
yk

)2 , where we see that semidefinite positiveness depends on the nominator.

To show that
∑
i

z2i

 m∑
k∈[m]\i

eyk+yi

 −∑
i ̸=j

zizje
yi+yj ⩾ 0, we write it as

∑
i ̸=j

(
z2i e

yj+yi − zizjeyi+yj
)
⩾ 0

which is due to z2i e
yj+yi + z2j e

yi+yj − 2zizje
yi+yj ⩾ 0 for all i > j, as can be seen from eyi+yj ⩾ 0 and

z2i + z2j − 2zizj = (zi − zj)2 ⩾ 0.

The objective satisfies max
i

(Ai ◦ X − bi) ⩽ f(X) ⩽ max
i

(Ai ◦ X − bi) +
ln(m)

K
since eKmaxi(Ai◦X−bi) ⩽

m∑
i∈[m]

eK(Ai◦X−bi) ⩽ meKmaxi(Ai◦X−bi) by positivity and increase of e and ln, and the properties of the loga-

rithm. So if we fix an error ε and set K =
ln(m)

ε
, we have max

i
(Ai◦X−bi) ⩽ f(X) ⩽ max

i
(Ai◦X−bi)+ε.

If min f(X) ⩽ ε, then we know that X is such that Ai ◦X ⩽ bi + ε for all i ∈ [m]. If min f(X) > ε, then
for all spd X with tr(X) = 1, f(X) > ε , so that max

i
(Ai ◦X − bi) > 0 so that in particular there is an

index for which Ai ◦X > bi, and we see that the initial SDP is infeasible. Thus, solving min f(X) st. X
spd and tr(X) = 1 for our choice of K provides an almost feasible X or provides the certitude that the
SDP is infeasible.

We will now explain how to solve min f(X) st. X spd and tr(X) = 1 with a conditional gradient
or Frank-Wolfe type approach. Recall that these approaches compute a sequence of feasible solutions
Xk, starting from X0 = E11, by approximating the objective by it’s first-order approximation, which is
S 7→ f(Xk)+∇f(X)t(S−Xk) at each step, finding spd Sk with tr(Sk) = 1 that maximises it, and updating
with Xk+1 = Xk + sk(Sk −Xk), where sk ∈ [0, 1] is chosen in some way. The fact that the relation defin-
ing Xk+1 is a convex combination on the convex spectahedron means that we do indeed get feasible points.
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The first task in performing this algorithm is to compute ∇f(X).

We compute ∂(ij)f(X) =

∑m
k∈[m](Ak)ije

K(Ak◦X−bk)∑m
k∈[m] e

K(Ak◦X−bk)
, which can be expressed as∇f(X) =

m∑
k∈[m]

eK(Ak◦X−bk)∑m
k∈[m] e

K(Ak◦X−bk)
Ai

(by thinking of the gradient as a matrix, like for X). Note that this is a convex combination.

Next, we’re faced with solving the subroutine of form max
X∈Sp

(G ◦ X), where we denote the spectahe-

dron Sp = {X : X psd, tr(X) = 1} and recall that G is psd, since ∇f(X) is, as a convex combi-
nation of the psd Ak. We’ll show that this is equivalent to solving an eigenvalue problem. Indeed,
a psd X can be diagonalized into X = PDP t by spectral decomposition, with D ⩾ 0 and P or-

thonormal. By decomposing D =

n∑
i=1

DiiEii and computing the matrix producs along the lines of

P

 0
0 Dii 0

0

P t = P

 0
Dii(P∗i)

t

0

 = DiiP∗i(P∗i)
t, we get X =

n∑
i=1

DiiP∗i(P∗i)
t. The condition

tr(X) = 1, the trance properties, and tr
(
P∗i(P∗i)

t
)
= ∥P∗i∥2 = 1 imply that

n∑
i=1

Dii = 1. In parallel,

rewriting the objective as G ◦ X = tr
(
GtX

)
, and using spectral decomposition G = Q∆Qt, we have

tr
(
GtX

)
= tr

(
Q∆tQtPDP t

)
= tr

((
QtP

)
(∆D)

(
QtP

)t) by the trace properties. Now
(
QtP

)
is also

orthonormal and (∆D) diagonal, so that by the same arguments as for X, we can write G◦X =

n∑
i=1

∆iiDii.

Thus, the problem reduces to finding the maximum
n∑

i=1

∆iiDii where the Dii form points of the standard

simplex. We therefore know the maximum to be max
i

(∆ii). Recall that the ∆ii where the eigenvalues of

the psd G, so that max
i

(∆ii) = λmax(G). The maximum is attained by X = xxt, for a unit eigenvector x

of eigenvalue λmax(G) of G, since G ◦X = tr
(
Gtxxt

)
= tr

(
xtGtx

)
= tr

(
λmax(G)x

tx
)
= λmax(G).

So the subroutine we have to carry out is finding the largest eigenvalue of a psd matrix. In this par-
ticular case, the eigenvalue problem can be solved approximately by the power method.
Note that it’s this argument that allowed us to determine the bound of binary search.

All that is left to clarify is how to set the sk ∈ [0, 1]. This is linked to the analysis of Hazan’s algo-
rithm, which we’ll now start.
The first inequality need is estimating how good the linear approximation is: we’ll show the bound on the
iterations decrease in objective value f(Xk+1)− f(Xk) ⩽ ∇f(Xk)(sk(Sk −Xk)) + s2kK.
The bound is shown by giving a Taylor series approximation of second order, with remainder, the remain-

der having form
1

2
s2k(Sk −Xk)

t∇2f(Y )(Sk −Xk) (where we identify the matrices to vectors), where Y is
a convex combination of Xk and Xk+1 an is therefore also in the spectahedron. this can be bounded by
1

2
s2kλmax

(
∇2f(Y )

)
diam(Sp)2, where diam(Sp) is the diameter of the spectahedron for the Frobenious/L2-

norm. We’ll show that diam(Sp) =
√
2. We have for A,B ∈ Sp, ∥A − B∥22 = tr

(
(A−B)t(A−B)

)
=

tr
(
AtA

)
− tr

(
AtB

)
− tr

(
BtA

)
+ tr

(
BtB

)
. With the previous discussion and tr

(
AtA

)
⩽ max

X∈Sp
(A ◦X),

for example, we find that ∥A−B∥22⩽ λmax(A)− λmin(B)− λmin(A) + λmax(B). Since eigenvalues of psd
matrices are positive, and those of psd matrices of trance 1 must sum to 1 by spectral decomposition and
trace invariance, we have ∥A − B∥22⩽ 2, so that applying the square root yields the bound. The bound
is tight and therefore the diameter, as can be seen when A and B are different elementary matrices of
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diagonal entry.

Hence the bound for our inequailty to be shown is now s2kλmax

(
∇2f(Y )

)
. To deal with λmax

(
∇2f(Y )

)
,

we’ll first use bound λmax

(
∇2f(Y )

)
⩽ tr

(
∇2f(Y )

)
, which holds as∇2f(Y ) is psd by convexity of f . We’ll

now handle ∇2f(Y ). Recall that ∂(ij)f(Y ) =

∑m
k∈[m](Ak)ije

K(Ak◦Y−bk)∑m
k∈[m] e

K(Ak◦Y−bk)
, so that to find ∂(ij)(ij)f(Y ), we

can look at ∂(ij)(ij)

(
eK(Ak◦Y−bk)∑m

k∈[m] e
K(Ak◦Y−bk)

)
(Y ) only, by linearity. We then get ∂(ij)(ij)

(
eK(Ak◦Y−bk)∑m

k∈[m] e
K(Ak◦Y−bk)

)
(Y ) =

K(Ak)ije
K(Ak◦Y −bk)(

∑m
q∈[m] e

K(Aq◦Y −bq))−eK(Ak◦Y −bk)(
∑m

q∈[m] K(Aq)ije
K(Aq◦Y −bq))

(
∑m

k∈[m] e
K(Ak◦Y −bk))

2 . We then see that when com-

puting tr
(
∇2f(Y )

)
, we get sum

K
∑m

k∈[m]

∑m
q∈[m](Ak)ij((Ak)ij − (Aq)ij)e

K(Ak◦Y−bk+Aq◦Y−bq)∑m
k∈[m]

∑m
q∈[m] e

K(Ak◦Y−bk+Aq◦Y−bq)
. This is a

convex combination of numbers that can be bounded by K2max
kij

(|(Ak)ij |). Since we can scale the inequal-

ities of the SDP so that max
kij

(|(Ak)ij |) ⩽
1

2
, we have bound λmax

(
∇2f(Y )

)
⩽ K.

We can finally complete the anaylsis. By denoting the optimum with X∗, and using convexity to get in-
equality∇f(Xk) (X

∗ −Xk) ⩽ f (X∗)−f(Xk), as well as using∇f(Xk)(sk(Sk −Xk)) ⩽ sk (∇f(Xk) (X
∗ −Xk) + δ)

where δ is the approximation error of the eigenvalue computation used to since Sk, we get
∇f(Xk)(sk(Sk −Xk)) ⩽ sk (f (X

∗)− f(Xk)) + skδ. Finally with f(Xk+1)−f(Xk) ⩽ ∇f(Xk)(sk(Sk −Xk)) + s2kK,
we get f(Xk+1)− f(Xk) ⩽ sk (f (X

∗)− f(Xk)) + skδ + s2kK, rewritten as
f(Xk+1) ⩽ skf (X

∗) + (1− sk)f(Xk) + skδ + s2kK.

Many choice for sk are now possible. We’ll investigate sk = min

(
1,

2

k

)
, for which the recursion be-

comes f(Xk+1) ⩽
2

k
f (X∗) +

(
1− 2

k

)
f(Xk) +

2

k
δ +

4

k2
K for k ⩾ 2. We’ll show by induciton that

f(Xk) ⩽ f (X∗) + δ +
4K

k
. For k = 1, this is just f(Xk+1) ⩽ skf (X

∗) + (1− sk)f(Xk) + skδ + s2kK and
1 ⩽ 4. For the step, note that

f(Xk+1) ⩽
2

k
f (X∗) +

(
1− 2

k

)(
f (X∗) + δ +

4K

k

)
+

2

k
δ +

4

k2
K = f (X∗) + δ + 4K

k − 1

k2
⩽ f (X∗) + δ +

4K

k + 1
,

since
(k + 1)(k − 1)

k2
=
k2 − 1

k2
< 1.
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22 Quadratic programming

22.1 Definitions and examples

Quadratic programm:

A quadratic programm (QP) is an optimization problem of form min
1

2
xtQx+ ctx st. Ax ⩽ b, where

Q is symmetric (and non-zero).

In general, we consider the case where Q is positive (semi-/) definite, so that this is a convex minimization
problem.

For example, finding the distance between polyhedra can be formulated as a quadratic program, as minimis-

ing ∥x−y∥ for Ax ⩽ b and Cy ⩽ d is equivalent to minimising (xt, yt)



1 −1
. . . . . .

1 −1
−1 1

. . . . . .
−1 1


(
x

y

)

st.
(
A 0
0 C

)(
x

y

)
⩽

(
b

d

)
.

Another application is in the field of finance. We need to determine the fractions of capital xi to be
invested in project i, which has as return the random variable Xi, that allows for high and safe returns.
The return is E

(∑
xiXi

)
=
∑

ximi, assuming mi = E(Xi) is known, for
∑

xi = 1 and x ⩾ 0. We
could at this stage solve an LP, but we also want to take risk into account. The risk is given by the
covariances

∑
ij

Cov(xiXi, xjXj) = xtQx where Q is the covariance matrix of X. To see that Q is positive

semidefinite, we write it as Q = E
(
(X −m)(X −m)t

)
so that xtQx = E

((
xt(X −m)

)2)
⩾ 0. We

then look for the minimum risk portfolio with an arbitrarily set minimum expected return r by solving

minxtQx st.


∑
ximi ⩾ r∑
xi = 1

x ⩾ 0

. Alternatively, we can set s > 0 and t < 0 to model the focus on either risk

or return, and solve min(s.xtQx+ t.mtx) st.


∑
ximi ⩾ 0∑
xi = 1

x ⩾ 0

.
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22.2 Active set method

We assume that Q is sdp, which guarantees that he QP has a unique solution, if the polyhedron is non-

empty. Indeed, the QP can’t be unbounded in this case, as
1

2
xtQx + ctx =

(
xtQx

)(1

2
+

ctx

xtQx

)
, where

ctx

xtQx

min(|xi|)−−−−−→
∞

0 (as can be seen from spectral decomposition), so that outside a large enough cube,(
xtQx

)(1

2
+

ctx

xtQx

)
> 0, and hence

1

2
xtQx+ ctx is bounded from below.

The active set method requires us to solve minxtQx + ctx st. Ax = b as subroutines, and this can
be done almost analytically, like for the Newton method. We start by finding a base B of ker(A) and a
particular solution x0 to transform the problem to the unconstrained min yt

(
BtQB

)
y+
(
2xt0QB + ctB

)
y.

In case of a zero kernel, the optimisation problem is trivially solved by 0. For positive semidefinite Q,
BtQB is positive semidefinite as well, so that this is a convex minimisation problem, since BtQB is the
Hessian. The first order condition is

(
BtQB

)
y = −

(
2xt0QB + ctB

)t and solving this linear system (effi-
ciently, since BtQB is spd) provides the minima.
We note that if Q is positive definite, there is a unique solution y, which is non-zero if c+2Qx0 is. Another
way of solving this subroutine is presented in the next paragraph.

Optimality conditions:
The active set method will also use optimality testing as subroutine. We can check if x is an optimal

solution to the QP by looking for the existance of solutions to the KKT system

{
λ ⩾ 0

(AT∗)
tλ+ c+Qx = 0

for λ, where T are the indices of rows of Ax ⩽ b that are tight for x, which handles the complementary
slackness condition (extend to the actual KKT system by setting the other multipliers to zero). This is
an LP-feasibility problem. We can actually solve a QP by solving LPs of this kind, for all possibilities
of T (or at least those that correspond to faces). If we don’t know the tight inequalities of the optimal
solution, and tr to solve the KKT directly, we’re dealing with a system of quadratic in-/equation, due to
complmentary slackness conditions.

For the subroutine of solving the equality constrained QP, the KKT system is simply

{
Ax = b

Atµ+ c+Qx = 0
,

which can be written as
(
Q At

A 0

)(
x

µ

)
=

(
−c
b

)
, with a symmetric invertible

(
Q At

A 0

)
when Q is

sdp and A has full rank, so that this system has a solution that solves the QP in this case. Indeed,{
Ax = 0

Atµ+Qx = 0
⇒

{
xtAt = 0, Atµ+Qx = 0

xtAtµ+ xtQx = 0
⇔ x, µ = 0.

The active set algorithm (without degeneracy):
Contrarily to linear programming, QPs can attain their minimum anywhere on the polyhedron. If the
minimum is attained on the interior of a face (including the polyhedron itself), then we can solve the
problem on the affine hull of the face by solving a linear first order condition and finding the part of the
solutions that are inside the face/polyhedron, via an LP. However, if we where to try this on all faces, we
would have to determine all faces first, which is quite inefficient.
A better idea is to iteratively alternate between looking for a minimum on the face one is currently con-
sidering, and changing face (the "active sets") in a clever way, depending on a method for telling if doing
so will yield better results.

We start the algorithm with a initial point x0 of the polyhedron, which can be found by solving an
LP-feasibility problem. We consider the first active set I0 to be the indices of rows for which Ax0 ⩽ b
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is tight. We ask if x0 is a minimiser on the interior of the face that it’s on, a type of point we’ll call
quasistationary, and if not, in which direction the minimiser is. To check this we note that the points
of the affine hull of the face can be written as x0 + v where AI∗v = 0. The objective can be writ-

ten as
1

2
(x0 + v)tQ(x0 + v) + ct(x0 + v), who’s minimisation over AI∗v = 0 is equivalent to that of

1

2
vtQv +

(
xt0Q+ ct

)
v on AI∗v = 0 as constant terms don’t matter in the objective. We solve this as

described previously.

Two cases are of interest: the one where the optimum is v = 0, so that x0 is quasistationary, and
that where v ̸= 0, that is that we can do better, even on that face. We will investigate the second
case first. In this case, we disjoin two further cases: either x0 + v is in the interior of the face (check
A[m]\I0∗(x0 + v) < b[m]\I0), or it isn’t. In the case that it is, the point x1 = x+ v is quasistationary, and
has strictly lower objective value, by strict convexity of the objective for Q sdp. If it isn’t, then we will
follow the direction of v from x0 in a strate until we reach the boundary of the face: the point at which
we stop may not be the optimum on the face, but it should be close. We do this by looking at x0 + tv for

t ∈ [0, 1[. The farthest we can go so that A(x0 + tv) ⩽ b is t0 = min
i∈[m]\I0

(
bi −Ai∗x0
Ai∗v

: Ai∗v > 0

)
. There

has to be an index i ∈ [m]\I0 such that Ai∗v > 0, because otherwise x0 + tv for all t > 0 and hence t = 1
is in the polyhedron, the case we’ve disjoined and excluded here. Note also that t0 > 0 as bi − Ai∗x0
for i ∈ [m]\I0. The point x0 + t0v has therefore strictly lower objective value, by strict convexity of the

objective for Q sdp. We note that for an index j ∈ [m]\I0 achieving min
i∈[m]\I0

(
bi −Ai∗x0
Ai∗v

: Ai∗v > 0

)
, we

have Aj∗(x0 + t0v) = bj . Hence if we consider the set of active/tight inequalities on x0 + t0v, it contains
I0 and the new j. If we set x1 = x0 + t0v and we repeat the full process we started on x0 from here,
defining x2 in case x1, turns out to not be quasistationary on the face given by I0∪j, in the same way, and
so on, then the set of active inequalities will grow and grow, and we’ll be considering faces of decreasing
dimension, until we end up the a quasistationary xi in iteration i, possibly after m iterations, for in that
case the interior is the space.

Hence in at most m iterations of the case v ̸= 0, we end up with a quasistationary point xi. The
case v = 0 meant that x0 was quasistationary. So in all cases we end up at a quasistaionary point. We
then test if this point is actually a minimum on all of the polyhedron with the KKT conditions, which are{
λ ⩾ 0

(AIi∗)
tλ+ c+Qxi = 0

, where Ii is the set of tight inequalities on xi.

Instead of solving this LP-feasibillity problem we can observe the following. If xi is a non-degenerate (the

inequalities it’s tight at are independent) quasistationary point, that is, it’s the solution to min
1

2
xtQx+ ctx

st.

{
AIi∗x = bI

A[m]\Ii∗x ⩽ b[m]\Ii
and verifies A[m]\Ii∗x < b[m]\Ii , where AIi∗ has full rank (non-degenerate), then

Slater’s condition applies and we’re guaranteed a solution to the KKT system, which here resumes to
(AIi∗)

tµ+ c+Qxi = 0. This is actually a direct consequence of AIi∗ having full rank. So a way of check-
ing global optimaility of xi is by solving (AIi∗)

tµ+ c+Qxi = 0, and checking if the unique solution µ ⩾ 0,
which implies global optimality. If there is some j with µj < 0, then by uniqueness of the solution µ, we
know that the global KKT system can’t have a feasible solution, hence xi isn’t optimal.
For a geometric viewpoint, recall that c+Qxi = 0 is the gradient of the objective at xi and (AIi∗)

tµ for
µ ⩾ 0 is the normal cone of the face.

The case of a quasistationary point that isn’t a global optimum point can happen. For example, con-

sider the problem of minimisng the distance to (0, 2) on the unit cube, and we start at
(
1

2
,−1

)
. Since
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we sarted on the bottom face, we look for the minimum on that face, which is the quasistationary (0,−1).
To get to the actual optimum (0, 1), we have to leave the bottom face.

The µj < 0 of (AIi∗)
tµ+ c+Qxi = 0 indicates that we should move in the opposite direction and

leave the face by discarding the condition Aj∗(x0 + v) = bj . To do this we seek a direction d that
should lower the objective if we persue it a bit, which in terms of gradients means

(
xtiQ+ ct

)
d < 0. We

have c+Qxi = −(AIi∗)
tµ. Since the (AIi∗)

t are independent (non-degeneracy), those of Ii\j can’t span
all of space, and we can project (Aj∗)

t onto span
(
(AIi\j∗)

t
)⊥ getting the vector a ∈ ker(AIi\j∗) with

at(Aj∗)
t > 0. Then (c+Qxi)

ta = −µtAIi∗a = −µjAj∗a > 0, so that d = −a is a good candidate. We
next look if this direction yields feasible points by investigating A(xi + td) ⩽ b for t > 0. On the rows
of Ii\j, since d ∈ ker(AIi\j∗) and Ii are the tight rows for xi, no problems arise. Since Aj∗d < 0 and
the j’th inequality is tight at xi, we have Aj∗(xi + td) ⩽ bj for t ⩾ 0. Finally, for the rows of [m]\Ii, we
have A[m]\Ii∗xi < b[m]\Ii : so even if there is a k ∈ [m]\Ii with Ak∗d > 0, we can find a small enough t
such that (A[m]\Ii∗(xi + td) ⩽ b[m]\Ii by a similar argument as we’ve seen for taking the direction of the
quasistationary point on a face that doesn’t contain it. So we can move a bit in the direction of d from xi
and stay in the polyhedron. We’ll now formally prove that the direction we’ve chosen really does decrease
the objective.

Indeed, for f(xi + td) =
1

2
(xi + td)tQ(xi + td) + ct(xi + td) = t2

1

2
dtQd+ t

(
xt0Q+ ct

)
d+ f(xi), which is

decreasing for t ∈

[
0,
−
(
xt0Q+ ct

)
d

dtQd

]
(since

(
xtiQ+ ct

)
d < 0, as we conjectured). Hence, for a positive t

in both ranges, we can move to xi+1 = xi + td to decrease the objective value strictly.

We just develloped a method that, given a non optimal quasisationary point, contructs one of lower
objective value. Once we’ve arrived at this point, we reiterate the algorithm, starting with that xi+1 as
initial point. This concludes the description of the active set method.
To see that the algorithm terminates, note that after at most m successive iterations, we encounter a
quasistationary point of strictly lower objective value. Hence quasistationary points may not repeatedly
appear under consideration during the algorithm, as this would contradict the strict decreases. By strict
convexity, a face may contain at most one quasistationary point per face, if any. So since there are finitely
many faces, there are finitely many quasistactionary points, and the algorithm terminates. Since the al-
gorithm terminates only when the quasisationary point is optimal, the algorithm does indeed produce the
optimal solution.

Degeneracy:
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23 Multiplicative weights method

23.1 Multiplicative weights algorithms

The multiplicative weight algorithm originates from decision theory. We’re in the following situation: we
have to make a sequence of T yes/no decisions on a topic we know nothing about, and have access to
the advice of n "experts" (which may more or less frequently give false advice). The problem consists in
making decisions given the experts advice, such as to get the best results. On the course of the process,
we can observe if our decisions are correct or not, and adapt our credibility of the experts at each step.
Since we have no clue on the topics we decide on, our measure of how good our decisions were will be a
comparison to the best experts number of incorrect decisions (the least number of incorrect decisions over
all experts).

For example, we can introduce the following procedure. We attribute to each expert i a credibility weight
wi(t), for decision t, that we initialise at wi(t) = 1. To make decision t, we pick the yes/no advise that
is in a weighted majority (with yes at ties) with the experts. For example, if I ⊂ [n] are the experts

advising "yes", then we play "yes" if
∑
i∈I

wi(t) ⩾
1

2

∑
i∈[n]

wi(t). We then observe if the decision was correct

or not and update the credibility of experts as follows: if i was correct, wi(t + 1) = wi(t) and otherwise

wi(t+ 1) =
wi(t)

1 + ε
, for a fixed parameter ε > 0.

We’ll now analyse the procedure. We’ll keep track of ϕ(t) =
∑
i∈[n]

wi(t) (sometimes called a potential).

If I is the set of experts that was wrong for decision t, then ϕ(t + 1) =
1

2

∑
i∈I

wi(t) +
∑

i∈[n]\I

wi(t). To

relate this to ϕ(t), we note that ϕ(t + 1) = ϕ(t) − 1

2

∑
i∈I

wi(t). In the case that we the weighted ma-

jority was wrong, so
∑
i∈I

wi(t) ⩾
1

2

∑
i∈[n]

wi(t), we then get that ϕ(t + 1) ⩽
3

4
ϕ(t). In general, we have

ϕ(t+ 1) ⩽ ϕ(t), as credibility can only decrease. So if M deontes the number of mistakes made with our

procedure, then ϕ(T + 1) ⩽

(
3

4

)M

ϕ(1) = n

(
3

4

)M

. On the other hand, ϕ(t) ⩾ wi(t) for all experts

by positivity, and if we denote by mi the number of misteks in T decisions made by expert i, then we

have wi(t) =

(
1

1 + ε

)mi

. Combining the bounds yields
(

1

1 + ε

)mi

⩽ n

(
3

4

)M

, which reformulates to

M ⩽
1

ln(4/3)
(ln(n) + ln(1 + ε)mi). This is the type of result we desire in decision theory, since in the

bound i was arbitrary, so we may take it for the expert with the least mistakes. Thus, for n experts, a

small ε and a number of decisions such that T ⩾
ln(n)

ln(4/3)
, the average number of mistakes

M

T
will at most

one more a small fraction of that of the best expert.

Multiplicative weight algorithms:
The multiplicative weights algorithms solve the same type of problems, but slightly differently. Now, we
consider expert advice to not be comparable. Thus, a first difference in the context is that following an
expert i’s advice, which is the typeof action we’re allowed to take, will incure a cost mi ∈ [−1, 1], where
negative costs are gains.
Our new strategy is the following. At decision t, we pick a probability distribution pi(t) over the ex-
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perts i with pi(t) =
wi(t)

ϕ(t)
, sample an expert with it and follow its advice. We’ll update credibility with

the rule wi(t + 1) = wi(t)(1 − ε)mi(t) if mi(t) ⩾ 0 (costs in total) and wi(t + 1) = wi(t)(1 + ε)−mi(t) if
mi(t) < 0 (gains in total), where mi(t) is the cost of expert i, if we played according to i’s advice at stage t.

To analyse the new strategy, we again track the potential, and hope to bound the avergae cost p(t)tm(t) at
decision t. Now ϕ(t+1) =

∑
mi(t)⩾0

wi(t)(1−ε)mi(t)+
∑

mi(t)<0

wi(t)(1+ε)
−mi(t). The updates have the property

that (1±ε)∓x ⩽ (1−εx) for x ∈ [−1, 1]. To see this, for x ⩾ 0, we can use convexity of positive exponentials
to get (1−ε)x ⩽ (1−ε) and x ⩽ 1 and ε > 0 to conclude, and for x ⩽ 0, we can use convexity of positive ex-

ponentials to get (1+ε)−x =

(
1

1 + ε

)x

⩽ 1 ⩽ 1−εx. This allows us to get ϕ(t+1) ⩽
∑
i∈[n]

wi(t)(1−mi(t)ε))

since weights remain positive. This in turn gives ϕ(t + 1) ⩽ ϕ(t)
(
1− εp(t)tm(t)

)
, as wi(t) = pi(t)ϕ(t).

With the good old inequality ex ⩾ 1 + x we get ϕ(t+ 1) ⩽ ϕ(t)e−εp(t)tm(t). Therefore, in the end we have
ϕ(T + 1) ⩽ ne−ε

∑
t⩽T p(t)tm(t).

Imitating the previous algorithm, we note that ϕ(T+1) ⩾ wi(T+1) = (1−ε)
∑

mi(t)⩾0 mi(t)(1+ε)
−

∑
mi(t)<0 mi(t),

so that combining bounds rewrites to ln(n)−ε
∑
t⩽T

p(t)tm(t) ⩾
∑

mi(t)⩾0

mi(t) ln(1−ε)+
∑

mi(t)<0

−mi(t) ln(1+

ε). With more clever inequalities, we can maque that inequality more digestible. With ln(1+x) ⩾ x−x2 on[
−1

2
,
1

2

]
, we have for

1

2
⩾ ε > 0 also ln(1−ε) ⩾ −ε−ε2. Then

∑
mi(t)⩾0

mi(t) ln(1−ε)+
∑

mi(t)<0

−mi(t) ln(1+

ε) ⩾ −ε
∑
t⩽T

mi(t)− ε2
∑
t⩽T

|mi(t)|.

Finally, we get the nice bound on the total expected cost
∑
t⩽T

p(t)tm(t) ⩽
∑
t⩽T

mi(t)+ ε
∑
t⩽T

|mi(t)|+
ln(n)

ε
.

We can get even smoother by minimising the second part in ε: for n large enough so that ε =

√
ln(n)

n
⩽

1

2
,

we have
∑
t⩽T

p(t)tm(t) ⩽
∑
t⩽T

mi(t) + (n

√
ln(n)

n
+

ln(n)√
ln(n)
n

.

INCLUDE: Update rule from Gupta O’Donnell as exercise ?
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23.2 Solving particular LPs and SDPs with multiplicative weights

LPs, like minimum set cover:
The context is that of determining if intersections of polyhedra are empty or not, where one of the polyhe-
dra has a particular form that allows us to find point in it reasonably fast. If P is the "easy" polyhedron,
we seek to find a point x ∈ P such that Ax ⩾ b, or decide that none exists. We’re actually in an even
more restrained context, where we assume that we can easily decide if a plane

(
ptA
)
x <

(
ptb
)

separates
P from Ax ⩾ b. To be precise, we assume that an oracle tells us, given p, if

(
ptA
)
x <

(
ptb
)

on all of P ,
or finds an element x in P such that

(
ptA
)
x ⩾

(
ptb
)
.

This is the case for the LP-relaxation of the set cover problem. If we want to test if the k among m
sets Si ⊆ [n] can cover the elements of [n], then we want to find a binary vector x such that 1tx = k

and
∑
i:j∈Si

xi ⩾ 1 for all j ∈ [n]. In the LP-relaxation where the binary condition becomes x ⩾ 0, we

can let P be the simplex 1tx = k, x ⩾ 0 and Ax ⩾ b be the constraints
∑
i:j∈Si

xi ⩾ 1 for all j ∈ [n].

For p, we can decide if
(
ptA
)
x <

(
ptb
)

on all of P directly by testing if k.max
j

((
ptA
)
j

)
<
(
ptb
)

(we

solve an LP on the standard simplex): if not, then we output x = kej for the index j attaining the pre-
vious maximum. This is our oracle, which only required a comparison and the computation of a maximum.

With such an oracle, how do we find a point x ∈ P such that Ax ⩾ b or decide that none exists ?
The relation to the multiplicative weights algorithm is that we can consider the constraints

∑
i:j∈Si

xi ⩾ 1

for all j ∈ [n] to be the experts, in the sense that their cost is mj =
1

k − 1

∑
i:j∈Si

xi − 1

, where the

1

k − 1
is for normalisation, as for k ⩾ 2,

1

k − 1

∑
i:j∈Si

xi − 1

 ∈ [−1, 1], for the x produced by the oracle

for the set cover problem we just discussed. We then see that pt(Ax− b) = ptm.
If we use the multiplicative weights algorithm, where at each step t we compute x(t) as a point in P
such that

(
p(t)tA

)
x(t) ⩾

(
p(t)tb

)
(or find a p that separates the polyhedra), and define costs as we just

decribed, then we have 0 ⩽ p(t)tm(t), so that by the bound from multiplicative weights, we now have

0 ⩽
∑
t⩽T

1

k − 1
(Ax(t)− b)i + ε

∑
t⩽T

1

k − 1
|(Ax(t)− b)i|+

ln(n)

ε
.

By arraging sums by introducing ±
∑

t⩽T,(Ax(t)−b)i<0

1

k − 1
(Ax(t)− b)i, we get 0 ⩽ (1+ ε)

∑
t⩽T

1

k − 1
(Ax(t)−

b)i+2ε
∑

t⩽T,(Ax(t)−b)i<0

1

k − 1
|(Ax(t)−b)i|+

ln(n)

ε
, and finally 0 ⩽ (1+ε)

∑
t⩽T

1

k − 1
(Ax(t)−b)i+2εT+

ln(n)

ε
.

We can rewrite this introducing x∗ =
1

T

∑
t⩽T

x(t) which is in P by convexity, to get 0 ⩽ (Ax∗ − b)i +

(k − 1)

(1 + ε)

(
2ε+

ln(n)

εT

)
, so that x∗ is approximately feasible, sinceAx ⩾ b−δ for δ =

(k − 1)

(1 + ε)

(
2ε+

ln(n)

εT

)
· 1.

This term can be made small by making ε small and T large.

Returning to the case of set cover, the method we described allows us to find an almost feasible point for
the LP-relaxation of the set cover feasibility problem for k sets, or determine that none exists. In this

case, we can actually consider x =
1

1− δ
x∗ with δ < 1, which is a feasible point for the minimum set cover
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LP-relaxation, with objective value
k

1− δ
, which is almost k for small δ.

SDPs, like maximum cut:
Recall the SDP-relaxation of the max cut problem, where we minimise a linear function on the coeficients
of a psd X, subject to constraints xii = 1.

We make use of the fact that one can easily answer questions of type: is there a psd X of trace 1

that satisfies
∑
ij

cijxij ⩾ q, for some q and a psd C ? We use this in our oracle, as we’ve done

with LPs. It turns out that asking
∑
ij

cijxij ⩾ q is equivalent to finding the largest eigenvalue of

C: with spectral decomposition, we have C = P tDP for a diagonal D ⩾ 0, who’s diagonal entries
are the eigenvalues of C, and by setting Y = PXP t, and by writing

∑
ij

cijxij = tr
(
CtX

)
to ease

computations, we have tr
(
CtX

)
=
(
P tDPP tY P

)
= tr(DY ). Since also tr(Y ) = tr(X) = 1, we

have tr(DY ) =
∑
ii

diiyii ⩽ max(dii), by positivity and
∑
ii

yii = 1. This inequality is tight: if v

is the unit eigenvector to the maximum eigenvalue of C (aka max(dii)), then for X = vvt, we have
tr
(
CtX

)
= tr

(
Cvvt

)
= max(dii)∥v∥2 = max(dii).

So
∑
ij

cijxij ⩾ q precisely the case when max(dii) ⩾ q: if it is the X = vvt is a candidate, otherwise,

tr
(
CtX

)
⩽ max(dii) implies impossibility of a solution.

INCLUDE: power method for computing largest eigenvalues...
FINISH: from LP SDP Gupta script
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23.3 Solutions
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24 Non-convex optimization

Non-convex optimization is a much more difficult task then convex optmization. This is because in convex
optimization, local minima are by deffinition global ones, so that local improvements always lead to the
best solution. This isn’t the case in non-convex optimization, in which local information is nothing but
local. here, local optima may not be global, and worse first order local approximations are unreliable, so
that saddle points turn up.

24.1 Gradient methods

In non-convex optimization, it may be hard to do the best, but it’s still easy to do better.
In a differentiable setting, we can still perform gradient descent with constant step size s, where we up-
date with xk+1 = xk − s∇f(xk). We still have, assuming L-smoothness, or equivalently an L-Lipschitz

gradient, or a bounded Hessian, the bound f(x+ d) ⩽ f(x) +∇f(x)td+ 1

2
L∥d∥2. So we have f(xk+1) ⩽

f(xk) − s∥∇f(xk)∥2 +
1

2
Ls2∥∇f(xk)∥2, or equivalently

(
s− 1

2
Ls2

)
∥∇f(xk)∥2 ⩽ f(xk) − f(xk+1). As-

suming that 0 < s <
2

L
, which in practice means that we seek small s as L is generally unknown, we have(

s− 1

2
Ls2

)
> 0. This implies that 0 ⩽ f(xk)− f(xk+1), so that this is a descent method. We could also

perfom this step with backtracking line search and a variable step length at each iteration sk.
What is missing in the non-convex case is the strong convexity, aka. a lower bounded Hessian, which drove
most of the key steps in the analysis in the convex case.

Instead, we can make the following observation: we have
(
s− 1

2
Ls2

) k−1∑
i=0

∥∇f(xi)∥2 ⩽ f(x0) − f(xk).

This can still be exploited with min
i⩽k−1

(
∥∇f(xi)∥2

)
⩽

1

k

k−1∑
i=0

∥∇f(xi)∥2, in the form of min
i⩽k−1

(
∥∇f(xi)∥2

)
⩽

f(x0)− f(xk)
k
(
s− 1

2Ls
2
) . In the case that f is lower boundable by somem, we get min

i⩽k−1

(
∥∇f(xi)∥2

)
⩽

f(x0)−m
k
(
s− 1

2Ls
2
)

and we see that the smallest gradient encountered along the descent will eventually become smaller. So
we’ll get closer to critical points, which may be saddle points, instead of local minima.
We can actually get better results for adapting steps sk, with a closer analysis. The starting point of this

version of gradient descent is that in
(
sk −

L

2
s2k

)
∥∇f(xk)∥2 ⩽ f(xk)− f(xk+1), for 0 < sk <

2

L
, we have

f(xk) ⩾ f(xk+1), and so for m lower-bounding f and δk = f(xk) − m we have δk ⩾ δk+1 ⩾ 0, and by

writing µk =

(
sk −

L

2
s2k

)
> 0, we have µk∥∇f(xk)∥2 ⩽ f(xk) − f(xk+1) = δk − δk+1. Summing on the

steps as before yields
K−1∑
k=0

∥∇f(xk)∥2 ⩽
K−1∑
k=0

1

µk
(δk − δk+1) =

δ0
µ0

+

K−1∑
k=1

δk

(
1

µk
− 1

µk−1

)
− δK
µK

by a split

of the sum and an index change. Now by dropping the last term in the last bound, because it’s negative,

and using the decrease of positive δk, we get
K−1∑
k=0

∥∇f(xk)∥2 ⩽

(
1

µ0
+

K−1∑
k=1

(
1

µk
− 1

µk−1

))
δ0 =

δ0
µK−1

,

so a bound of
δ0

µK−1
. However, we can get a better bound with a clever update. If we manage to set

µK−1 =
C√∑K−1

k=0 ∥∇f(xk)∥2
for a choice of sK−1 and a constant C, then

K−1∑
k=0

∥∇f(xk)∥2 ⩽
δ0

µK−1
becomes

285



√√√√K−1∑
k=0

∥∇f(xk)∥2 ⩽
δ0
C

. We then have min
k⩽K−1

(∥∇f(xk)∥) ⩽
δ0
KC

. This would be a better bound in the

sense that it doesn’t require use to know L. We can therefore iterate for K =

⌈
δ0
εC

⌉
so that we have

min
k⩽K−1

(∥∇f(xk)∥) ⩽ ε, which we can determine if we know m and C only.

CONCLUDE: use
(
sk −

L

2
s2k

)
⩽
sk
2

on 0 < sk <
1

L
to simplify setting µ

Stochastic gradient descent:
In the chapter on neural networks, we’ll encounter optimization problems in which the objective is an

increadibly large sum of similar objectives, such as f(x) =
1

|F |
∑
i∈F

gi(x) where F is large, for example F

is the size of a data set. To handle this problem, an idea is to sequentially partially minimise one of the
gi, hoping that by similarity of the gi, we’ll get many of them, hence also f , to take smaller values.

In fact, we will proceed at follows. We choose a probability distribution on F , and at each step. We
select am i ∈ F according to this distribution, and update xk+1 = xk − s∇gi(xk), a gradient descent
update for step s and gradient ∇gi(xk).
To analyse this approach, we consider f(xk+1) ⩽ f(xk)−s∇f(xk)t∇gi(xk)+

L

2
s2∥∇gi(xk)∥2, assuming f to

be l-smooth, so that by linearity and monotony of expectationEf(xk+1) ⩽ Ef(xk)−s∇f(xk)tE(∇gi(xk))+
L

2
s2E∥∇gi(xk)∥2. The similarity assumption on the sum that is the objective will be that E(∇gi(xk)) =
∇f(xk), so that we expect the average gradient of a term to be that of the sum. To handle E∥∇gi(xk)∥2,
we will assume that we know a bound ∥∇gi(xk)∥ ⩽ B for all i ∈ F . So we have Ef(xk+1) ⩽ Ef(xk) −
s∥∇f(xk)∥2 +

L

2
s2B2. Rephrasing to ∥∇f(xk)∥2 ⩽

1

s
(Ef(xk) − Ef(xk+1)) +

L

2
sB2, we have with the

same arguments as before min
k⩽K−1

(
∥∇f(xk)∥2

)
⩽

1

Ks
(f(x0) −m) +

L

2
sB2. So if we do K − 1 iterations

with s =
1√
K

, we’ll know that min
k⩽K−1

(
∥∇f(xk)∥2

)
is in O

(
1√
K

)
.

Some remarks are in order. E(∇gi(xk)) = ∇f(xk) doesn’t imply E∥∇gi(xk)∥2 = ∥∇f(xk)∥2: con-

sider the case of uniform distribution on ±v for some v ̸= 0, then E(∇gi(xk)) =
1

2
(v − v) = 0 but

E∥∇gi(xk)∥2 = ∥v∥2 ̸= 0.
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24.2 Indefinite quadratic programming

With "InteriorPtsMethodBook" by Ye, move to QP chapter ?
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24.3 Sequential convex programming
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24.4 Low rank matrix recovery
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24.5 Solutions
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25 Algebraic methods for interger optimization

25.1 More integer optimization problems:

Clustering (minimum variance):
We consider a set of n data-points on q criteria indexed as pi ∈ Rq. We which to partition the data-points
into k clusters of equal size, so that for clusters Cj ⊆ [n] for j ∈ [k] and for a distance d, the total aggre-
gate distance of the points to their cluster average is minimum. This means that we which to minimise∑
j∈[k]

∑
i∈Cj

d

pi, 1

|Cj |
∑
s∈Cj

ps

. We’ll fix the size of the clusters as
n

k
, which we assume to be integer.

A first step is to model this as a MINLP (depending on d, as we’ll see) with the use of indicator variables
xi,j ∈ {0, 1}. We let xi,j = 1 if i ∈ Cj and xi,j = 0 otherwise. For only a single attribution to be possible,
we add constraint

∑
j∈[k]

xi,j = 1. We also add the constraint on the cluster size
∑
i∈[n]

xi,j =
n

k
. The objective

becomes
∑
j∈[k]

∑
i∈[n]

xi,jd

pi, k
n

∑
s∈[n]

xs,jps

.

We can treat two cases of d as MINLPs. For the norm ∥.∥1, we can introduce variables mi,d ∈ R

and constraints mi,d ⩾ pi,d −
k

n

∑
s∈[n]

xs,jps,d and mi,d ⩾ −pi,d +
k

n

∑
s∈[n]

xs,jps,d for all i ∈ [n], j ∈ [k]

and d ∈ [q]. We note that mi,d ⩾

∣∣∣∣∣∣pi,d − k

n

∑
s∈[n]

xs,jps,d

∣∣∣∣∣∣ and therefore
∑
d∈[q]

mi,d ⩾

∥∥∥∥∥∥pi − k

n

∑
s∈[n]

xs,jps

∥∥∥∥∥∥
1

.

By setting the objective to
∑
j∈[k]

∑
i∈[n]

xi,j
∑
d∈[q]

mi,d, we note that at a minimum solution, we must have all

mi,d =

∣∣∣∣∣∣pi,d − k

n

∑
s∈[n]

xs,jps,d

∣∣∣∣∣∣ so that the objective really does represent the aggregate distance: oth-

erwise, one could decrease the variables mi,d until a constraint is tight, as they appear in a single
constraint each, thereby decreasing the objective. Conversely, for a minimum clustering, we can set

mi,d =

∣∣∣∣∣∣pi,d − k

n

∑
s∈[n]

xs,jps,d

∣∣∣∣∣∣ and get a feasible solution to the MINLP.

For the maximum norm ∥.∥∞, we can introduce variables mi ∈ R and constraints mi ⩾ pi,d−
k

n

∑
s∈[n]

xs,jps,d

and mi ⩾ −pi,d +
k

n

∑
s∈[n]

xs,jps,d for all d ∈ [q]. Then mi ⩾

∥∥∥∥∥∥pi − k

n

∑
s∈[n]

xs,jps

∥∥∥∥∥∥
∞

and for reasons similar

to the previous MIP, we can solve the problem by minimising objective
∑
j∈[k]

∑
i∈[n]

xi,jmi.

In the case that the data is integer, we can set the m-variables to be integers, and we obtain INLP prob-
lems.

Clustering (minimum aggregate distance or cluster diameter):
In this first version of clustering, we seek to minimise the sum of the aggregate distance of the cluster
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points. We’ll have yi,h,j ∈ {0, 1} indicate if points pi and ph are in the same cluster j by constraining it
with yi,h,j ⩽ xi,j , yi,h,j ⩽ xh,j , yi,h,j ⩾ xh,j + xi,j − 1.
Then the objective becomes

∑
j∈[k]

∑
i ̸=h∈[n]2

yi,h,j∥pi − ph∥.

Alternatively, one can ask for clusters of uniformly small diameter. To get this we introduce variable
dj ∈ R for cluster j and require that dj ⩾ yi,h,j∥pi − ph∥ for all i ̸= h ∈ [n]2, so that dj is greater that the
largest distance that two points of cluster j can be separated by. Finally, to get a uniform bound on these
diameters, we introduce m ∈ R and constraints m ⩾ dj for all j ∈ [k] and minimise objective m.
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25.2 Gröbner bases

From "Ideals, varieties and algorithms" and Hoekstra thesis

The link between integer programming and the algebra we develop in this section is explained in the
first paragraph of the next section, which we recommend reading before proceeding here.
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25.3 Gröbner base methods for ILP

It turns out that IP-feasibility turns up in a particular type of chage of variables in algebraic geometry. In-
deed, for a monomial yn1

1 ...ynk
k , we can substitue yi = xai11 ...xaikk to get yn1

1 ...ynk
k = x

(a11n1+...+ak1nk)
1 ...x

(a1kn1+...+akknk)
k .

We can then ask if there is a monomial yn1
1 ...ynk

k for which this change of variable will lead to a mono-

mial xb11 ...x
bk
k , which is equivalent to asking IP-feasibility of


Atn = b

n ⩾ 0

n ∈ Zk

. Note that we’re restrained to

IP-feasibility with A ⩾ 0 (to deal with polynomials). There are generalizations for arbitrary A, which
we won’t develop. We will therefore study algebraic methods for answering the change of variable problem.

For a monmial f = xb11 ...x
bk
k ∈ C[x1, ..., xk], and for the fi = xai11 ...xaikk ∈ C[x1, ..., xk], we want to

know if the re is a monomial h = yn1
1 ...ynk

k ∈ C[y1, ..., yk], since for for which h(f1, ..., fk) = f . With
elimination theory, we’re lead to consider the ideal K = ⟨y1−f1, ..., yk−fk⟩ ∈ C[x1, ..., xk, y1, ..., yk], since
for h = yn1

1 ...ynk
k , we have:

Characterisation:

We have h(f1, ..., fk) = f ⇔ f − h ∈ K.

Proof: Indeed, if f−h ∈ K, then f(x1, ..., xk)−h(y1, ..., yk) =
∑
i∈[k]

qi(yi−fi) for some qi ∈ C[x1, ..., xk, y1, ..., yk],

so that f(x1, ..., xk)− h(f1, ..., fk) =
∑
i∈[k]

qi(fi − fi) = 0 and hence h(f1, ..., fk) = f .

Conversely, if h(f1, ..., fk) = f , we’ll investigate f−h, which is under this assumption f−h = h(f1, ..., fk)−
h(y1, ..., yk) =

∑
α∈F

cα
(
fα1
1 ...fαk

k − y
α1
1 ...yαk

k

)
for some finite set F ∈ Nk where h has all its non-zero coef-

ficients indexed in multi-index notation. We can prove that this is in K with a nice computational trick,
using the identity (X − Y )| (Xn − Y n). We write fα1

1 ...fαk
k − y

α1
1 ...yαk

k as a telescopic sum:
yα1
1 ...yαk

k −fα1
1 yα2

2 ...yαk
k

fα1
1 yα2

2 ...yαk
k −fα1

1 fα2
2 yα3

3 ...yαk
k

fα1
1 fα2

2 yα3
3 ...yαk

k
. . .

fα1
1 ...f

αk−1

k−1 yαk
k −fα1

1 ...fαk
k

Where we see that the sums columns cancel out, exept for the outer ones. Each line can be factored
in form fα1

1 ...f
αi−1

i−1 y
αi+1

i+1 ...y
αk
k (yαi

i − f
αi
i ), which is divided by (yi − fi), using the identity we mentioned.

Therefore, f − h ∈ K.

Gröbner IP-feasibility:

We compute a Gröbner basis G for ⟨
(
yi − xai11 ...xaikk

)
i
⟩ wrt an eliminiation order in which the x

variables are greater then the y variables. We determine the remainder of xb11 ...x
bk
k in the division

algorithm by G. The IP is feasible precisely when the remainder is a monomial of form yn1
1 ...ynk

k .

COMPLETE CONTINIUE: thesis Hoekstra, IP minimisation, non-positive case.
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25.4 Graver bases

Conformity:

For vectors of Rd, we say that x is conformal to y, written x ⊑ y, if their coordinates have pair-

wise same sign (xiyi ⩾ 0 for i ∈ [d]), and |xi| ⩽ |yi| for all i ∈ [d]. We call a sum s =

k∑
j=1

vj conformal if

vj ⊑ s for all j ∈ [k].

This is a partial order as it’s transitive.

Graver base:

For a lattice of form L(A) =
{
x ∈ Zd : Ax = 0

}
, we consider the set of non-zero minimal lattice

vectors wrt ⊑ (the v st. there is no w with w ⊑ v unless w = v), which is a finite (possibly empty) set
called the Graver basis of the lattice, written GA.

Proof: It’s non-trivial to show that the Graver basis is a finite set.
We show that any subset S of Zd has a finite number of non-zero minimal vectors wrt⊑. We show this
by induction on d, where for d = 1, ⊑ is just ⩽for same signed numbers, hence the Graver basis is the
minimum strict positive and maximum strict negative numbers of the closed set, and has size at most
2. For general d, we can focus on the intersection with one quadrate/orthant, wlog the positive one, as
showing finiteness for all of them shows finiteness for the whole set. Note the interesting remark that for
the positive quadrant, we see that minimality wrt ⊑ is equivalent to being Pareto-minimal.
Unless, the intersection of S with the orthant is empty, in whih case an empty Graver base does the job,
there is at least one Graver basis element in the orthant. Indeed, if x is a point of the orthant we can
keep finding elements yn ⊑ ... ⊑ y1 ⊑ x with strict inequalities until yn is in the Graver basis: at each step
∥.∥1 decreases, but it’s a positive integer, so there comes a point that can’t be dominated further, and
is minimal. So we have a minimal vector x, and we know that the vectors with y ⩾ x can’t be minimal
as they’re dominated by x, and there aren’t any y ⩽ x in the intersection of S with the positive orthant
(except for x), as x is minimal. Hence we know that the rest of the Graver basis vectors (of S in this
orthant) are in the intersections of S with the slices defined by 0 ⩽ yi ⩽ xi, for the dimensions i ∈ [d].
These slices have form Nd−1 × {0, .., xi}, and we know that a minimal vector of S ∩ Rd

+ is also one of
S∩

(
Nd−1{0, .., xi}

)
because is z ∈ S∩

(
Nd−1 × {0, .., xi}

)
is dominated y ⩽ z, then this is true in S∩Rd

+

as well. So the Graver basis elements of S ∩ Rd
+ are also minimal in Nd−1 × {0, .., xi} .

By slicing S ∩
(
Nd−1 × {0, .., xi}

)
further into S∩Nd−1 × {k} for k ∈ {0, .., xi}, we get that minimal

elements of Nd−1 × {0, .., xi} are also minimal in S ∩ Nd−1 × {k} for k ∈ {0, .., xi}.
We note that for a minimal element z of S ∩

(
Nd−1 × {0, .., xi}

)
with zd = k, z[d−1] is minimal in the

projection of S∩Nd−1×{k} on the first d− 1 coordinates: if it weren’t, so that y ⩽ z[d−1], then (y, k) ⩽ z,
where (y, k) ∈ S∩Nd−1 × {k}, contradicting the minimality of z. Now the projection of S∩Nd−1 × {k}
on the first d − 1 coordinates has a finite Graver basis by induction, since we’re in dimension d − 1.
We’ve established that the Graver basis elements other then x must project to Graver basis vectors of
S∩Nd−1×{k}, for some slice in k for some slice in dimension i, of which there are only finitely many, and
since at most xi + 1 of them can project to the same one in that respective slice, there are only finitely
many Graver basis vectors in the slices, hence in S ∩ Rd

+.
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Graver basis decomposition:

All non-zero elements x ∈ L(A) can be written as x =
∑
g∈GA

kgg for kg ∈ N, possibly not uniquely.

In fact, there is a conformal sum with at most 2d− 1 Graver basis vectors.

Proof: All elements x ∈ L(A) can be written as x =
∑
g∈GA

kgg for kg ∈ N, possibly not uniquely.

We show this by induction on ∥.∥1, where the zeor case is handled by zero coefficients in the sum. If an
arbitrary x isn’t already in the Graver bases element, we can keep finding elements yn ⊑ ... ⊑ y1 ⊑ x with
strict inequalities until yn is in the Graver basis: at each step ∥.∥1 decreases, but it’s a positive integer.
Then x− yn has strictly lower norm ∥.∥1 as we are in the same quadrant at both vectors. So we use the
induction assumption to get x − yn =

∑
g∈GA

kgg: incorporating yn in the sum with a positive coefficient

concludes the step.
A example where decompositions aren’t unique is for the lattice of integer points on the plane x+y−2z = 0.
We consider the positive orthant, in which (2, 0, 1), (0, 2, 1) and (1, 1, 1) are in the Graver basis, which one
can check by noting that all integer vectors of the positive orthant with at least one smaller coordinate
don’t satisfy x+ y − 2z = 0. Here, (2, 0, 1) + (0, 2, 1) = 2.(1, 1, 1) are different conformal sums of Graver
basis vectors summing to (2, 2, 2).
To get the bound on the number of Graver basis in a sum, we’ll consider max 1tλ st. x =

∑
g∈GA,g⊑x

λgg and

λ ⩾ 0, which we expect to use few g in great multiplicity. This LP is feasible (λ = k) and bounded, since

for all dimensions |xi| =
∑

g∈GA,g⊑x

λg|gi| as the coordinates have same sign by conformity, hence λg ⩽
|xi|
|gi|

.

For an optimal λ provided by the simplex method, only at most d of the λg corresponding to the optimal
basis are non-zero.
We next analyse the fractional part y =

∑
g∈GA,g⊑x

(λg − ⌊λg⌋)g = x−
∑

g∈GA,g⊑x

⌊λg⌋g ∈ L(A) by integrality

and linearity. If y = 0, then x =
∑

g∈GA,g⊑x

λgg is a sum of d ⩽ 2d − 1 terms and we got our conclusion.

Otherwise, since we can write y =
∑

g∈GA,g⊑x

qgg for qg ∈ N, and since by optimality
∑

g∈GA,g⊑x

(qg + ⌊λg⌋) ⩽∑
g∈GA,g⊑x

λg, as
∑

g∈GA,g⊑x

(qg+⌊λg⌋)g = x provides feasibility, we have
∑

g∈GA,g⊑x

qg ⩽
∑

g∈GA,g⊑x

(λg−⌊λg⌋) < d

(since λ is basic), so that at most d − 1 integers qg can be non-zero in that sum, we know that in the
positive integral sum

∑
g∈GA,g⊑x

(qg+⌊λg⌋)g = x has at most d+d−1 = 2d−1 entries (non-zero coefficients).

This sum is also conformal, hence we’re done

To compute Graver bases of lattices, we can relate them to Gröbner bases by characterising them with
primitive binomials of a toric ideal, which we now do.
TO COMPLETE: toric ideal version and computation with Hoekstra and its references.
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25.5 Graver base methods for INLP

We now discuss how Graver bases can be used to solve a particular type of non-linear convex integer
optimization problem:

Integer convex-separable optimization:

The solution space of such an optimization problem is Zd ∩ {x : Ax = b, l ⩽ x ⩽ u}. The objec-
tive is to minimise

∑
j∈[d]

fj(xj), where the fj are univariate convex functions mapping integers to integers.

The minimum exists as the solution space is finite (integer vectors in a rectangle).

More generally, we can optimize
∑
i∈[d]

fi

∑
j∈[d]

wijxj

 for such functions on that solution space

and for integral W , by reducing it to problems of the first type, by minimising
∑
i∈[d]

fi(yi) over

Zd ∩
{(

x

y

)
: Ax = b, l ⩽ x ⩽ u, Wx− Iy = 0 , l′ ⩽ y ⩽ u′}, as the zero function is convex, and where

l′ and u′ are computed by solving LPs of form min(±yi) st.

{
yi =Wi∗x

Ax = b, l ⩽ x ⩽ u
, which have finite

solutions (l ⩽ x ⩽ u means we deal with a polytope), that we round to integers.

We’ll need to develop a bit of theory for integer convex-separable optimization before giving the algorithm
for solving such a problem, given a Graver basis of L(A). The general idea of the algorithm is that we
perform local search, by moving along Graver basis vectors in a magnitude determined by a form of exact
line search by binary search.

Integer convex binary search:

We can find the minimum of a convex f on Z ∩ [r, s] for integer r, s as follows:

If r = s, then this is the optimum. Else, we check if the midpoints
⌊
r + s

2

⌋
and

⌊
r + s

2

⌋
+ 1 are =, in

which case we output this value as its optimal,<, in which case se keep searching on
[
r,

⌊
r + s

2

⌋]
, or >,

in which case se keep searching on
[⌊
r + s

2

⌋
+ 1, s

]
. The algorithm takes at most log2(s− r) iterations.

In the = case, we know that f can’t have lower values on
[
r,

⌊
r + s

2

⌋]
or
[⌊
r + s

2

⌋
+ 1, s

]
, as in the first

case,
⌊
r + s

2

⌋
’s value would contradict convexity between r and

⌊
r + s

2

⌋
+ 1, and similarly in the other

case. In the <case, the minimum can’t be in
[⌊
r + s

2

⌋
+ 1, s

]
, as convexity between it and

⌊
r + s

2

⌋
would

be contradicted by
⌊
r + s

2

⌋
+ 1. Similar arguments handle >.
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Line search:

For a convex f : Zd → Z and h(k) = f(x + kg) for k ∈ N, we solve minh(k) st. l ⩽ x + kg ⩽ u and
k ∈ N, assuming l ⩽ x ⩽ u (feasibility) and f(x+ g) < f(x) (descent direction) for g ̸= 0 as follows. We

determine how large k can be so that l ⩽ x+ kg ⩽ u, by noting k ⩽ s = min

({
ui−xi
gi

: gi > 0
li−xi
gi

: gi < 0

)
<∞,

since g ̸= 0. We then use the binary search as we just described on [0, s] to find the minimum, as h is
convex.

To see that h is convex, split x = (1− t)x+ tx.
Note that this part is why we assume a finite solution space. Otherwise, we can’t use binary search as we
might have s = ∞, in which case we max have unboundedness or a minimum the distance to which we
have no information on.

A key point in the analysis of our algorithm for INLP is that for a sub-optimal point x and a point
x∗ that achieves the minimum we have x∗−x ∈ L(A) so that we have a conformal sum x∗−x =

∑
g∈GA

kgg

of at most 2d− 1 terms. We will now use:

Superadditivity lemma:

For a conformal sum
∑

g (possibly with repretitions), we have f
(
x+

∑
g
)
−f(x) ⩾

∑
(f(x+g)−f(x)).

Then 0 > f (x∗) − f(x) = f

x+
∑
g∈GA

kgg

 − f(x) ⩾ ∑
g∈GA

kg(f(x + g) − f(x)). The key point is that

we then know that not all tems of the last sum can be positive, so that there is at least one g ∈ GA for
which f(x+ g) < f(x), aka. g is a descent direction when x is non-optimal.
Proof of the lemma: Since f is convex-separable, the result follows if it’s true for the fj , by adding the

inequalities over j. So all we have to show is fj

(
xj +

∑
g

gj

)
− fj(xj) ⩾

∑
g

(fj(xj + gj)− f(xj)), where

conformity of the sum implies that the gi have the same sign, or are all zero, in which case the inequality

is true. If we write h(gj) = fj(xj + gj)− f(xj), we reformulate the inequality as h

(∑
g

gj

)
⩾
∑
g

h(gj).

This is follows from h(tx) ⩽ th(x) for t ∈ [0, 1], which is itself due to convexity: note that fj is convex
and so h is as well, and h(0) = 0, so h(tx) ⩽ th(x) ⇔ h(tx + (1 − t)0) ⩽ th(x) + (1 − t)h(0). Indeed,∑
g

h(gj) =
∑
g

h

(
tg
∑
g

gj

)
⩽
∑
g

tgh

(∑
g

gj

)
= h

(∑
g

gj

)
for tg =

gj∑
g gj
∈ [0, 1] as all gj have the

same sign and sum up to 1, and we handled the case in which they’re all zero.

Graver basis integer convex-separable optimization algorithm:

We start with the Graver basis of L(A) and an initial feasible solution x0. At each step, we
check if there is a Graver basis vector g such that f(xk + g) < f(xk) and if so, we choose the steepest
descent direction g′ that minimises f(xk + g′). If there isn’t, then xk will be optimal. Otherwise, we
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use line search on h(k) = f(xk + kg′) st. l ⩽ x + kg′ ⩽ u and k ∈ N, the solution k∗ of which provides
xk+1 = xk + k∗g′.

Proof of correctness: Note that by g ∈ L(A) ⇒ Ag = 0, the points will satisfy Axk = Ax0 = b,
and by line search they will also satisfy l ⩽ xk ⩽ u, so that they’re feasible. As we’ve seen previously,
if xk isn’t optimal, then a g that is a descent direction is guaranteed to exist, so that the algorithm
stops only once the point is optimal. To see that the algorithm does stop at some point, we will show

that for an optimum x∗, we have f(xk+1) − f (x∗) ⩽
2d− 2

2d− 1
(f(xk)− f (x∗)) at each iteration, so that

f(xk)−f (x∗) ⩽
(
2d− 2

2d− 1

)k

(f(x0)− f (x∗)) and sincef maps integers to integers, when xk is non-optimal,

1 ⩽ f(xk) − f (x∗) ⩽

(
2d− 2

2d− 1

)k

(f(x0)− f (x∗)) so that k ⩽
ln (f(x0)− f (x∗))

ln
(
2d−1
2d−2

) , so there can be only

finitely many iterations in which xk isn’t optimal.

To see that f(xk+1) − f (x∗) ⩽
2d− 2

2d− 1
(f(xk)− f (x∗)), we use the superadditivity lemma on x∗ − xk =∑

g∈GA

kgg, where the sum have at most 2d−1 terms. We get f (x∗)−f(xk) ⩾
∑
g∈GA

kg(f(xk+g)−f(xk)), to

which we add t (f(xk)− f (x∗)) where t is the number of terms (with multiplicity of the kg) of the sum, to
get (t − 1) (f(xk)− f (x∗)) ⩾

∑
g∈GA

kg (f(xk + g)− f (x∗)). Lower-bounding the sum by the minimum of

its terms, say f(xk + g′)− f (x∗), we get with positivity (t− 1) (f(xk)− f (x∗)) ⩾ t
(
f(xk + g′)− f (x∗)

)
.

Now we see the point of selecting the steepest descent direction g′′ in the Graver basis, as we then

get
(t− 1)

t
(f(xk)− f (x∗)) ⩾

(
f(xk + g′′)− f (x∗)

)
. Since line search produces a lower value, we get

(t− 1)

t
(f(xk)− f (x∗)) ⩾ (f(xk+1)− f (x∗)). Finally, we note that

(t− 1)

t
increases in t, which is at

most 2d−1, so that
2d− 2

2d− 1
(f(xk)− f (x∗)) ⩾ (f(xk+1)− f (x∗)) (with positivity), as we desired to show.

COMPLETE: phase 1 feasibility with Onn’s notes
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25.6 Solutions
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26 Aspects ot combinatorial optimization

26.1 Fractional combinatorial optimization: the discrete Newton method

A railway company wants to decide on where to build tracks so as to connect a set of cities between each
other. This corresponds to finding a tree T in a graph (V,E) who’s vertices are the cities and edges rep-
resent the available building spots. Each building on an edge e incurs a cost c(e) and will yield a income
m(e). In an unexpected plot-twist, we now seek a tree that maximises the ratio of the total income to the

total cost (instead of their difference): max

(∑
e∈T m(e)∑
e∈T c(e)

)
over all trees T of the graph.

More generally, for a combinatorial problem who’s feasible solutions can be represented by a set of inci-
dence vectors X ⊆ {0, 1}n, we seek to solve:

The fractional combinatorial optimization problem:

max
x∈X

(
atx− k
btx

)
for criteria vectors a and b in Rn, where we assume that atx > k and btx > 0 over X.

In an attempted IP-modeling perspective, we would introduce a variable λ ∈ R and constraints
atx− k
btx

⩽

λ ⇔ atx − k − λbtx ⩽ 0 for all x ∈ X, so that minimising λ would provide that desired maximum ratio.
However, the constraints are actually is non-linear.
If we write h(λ) = max

x∈X

(
atx− k − λbtx

)
, then constraints become h(λ) ⩽ 0. Next, if we observe that

for a fixed x, λ 7→ atx − k − λbtx strictly decreases in λ (due to btx > 0 over X), then the maximum
h(λ) also strictly decreases in λ (otherwise, the atx− k − λbtx for which the maximum is attained would
have increased). Thus, if h(λ) = 0 at some value, then h(λ) ⩽ 0 from there onward. Since our goal is to
minimise λ subject to h(λ) ⩽ 0, we’re actually looking for the unique root of h.

One can use the Newton method to find roots of differentiable functions: it consists of building a se-
quence of points by intersecting the tangent of the functions graph at that point with the zero-line. Here,
the function h is piecewise affine: it’s convex so that when x ∈ X is maximiser for λ1 and λ2, the epigraph
must contain the segment between their images, which corresponds to atx − k − λbtx, which will be on
the boundary of the epigraph between these points, for otherwise, we’d reach a contradiction. We can still
perform a Newton method as follows:

• Start at λ0 = 0

• At each step i, find the maximiser xi ∈ X of atx− k − λibtx.
In our examples, this requires finding a maximum spanning tree for weights ae−λibe = m(e)−λic(e).

• Solve for the tangent intersecting the zero-line as λi+1: atxi − k − λi+1b
txi = 0⇔ λi+1 =

atxi − k
btxi

.

• Proceed until encountering a λs for which hs = atxs − k − λsbtxs = 0.

The immediate question is whether we’ll ever encounter a λs for which hs = atxs − k− λsbtxs = 0 after a
finite (and hopefully not too large) number of k steps.
Could we ever encounter an hs < 0 ? By definition of λs in our algorithm, atxs−1 − k − λsbtxs−1 = 0, so
that by maximality in the definition of hs, hs ⩾ atxs−1 − k − λsbtxs−1 = 0. Next, to see that we make

progress, we note that λi+1 − λi =
atxi − k
btxi

− λi =
hi
btxi

⩾ 0. But do these steps get to small to quickly ?
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By remarking that by maximality hi ⩾ atxi+1−k−λibtxi+1 = atxi+1−k−λi+1b
txi+1+(λi+1−λi)btxi+1,

introducing λi+1 to make hi+1 appear, we have hi ⩾ hi+1 +
hi
btxi

btxi+1 and finally 1 ⩾
hi+1

hi
+
btxi+1

btxi
.

We can exploit this identity by seeing that it implies that at least one of
1

2
⩾

hi+1

hi
or

1

2
⩾

btxi+1

btxi
is

true. It’s possible to do a deep analysis from this starting point that shows that the algorithm will termi-
nate in time polynomial in n. However, it’s very computational, so we’ll skip it here.
As a excuse for an answer, we’ll remark that for integer valued b ∈ Zn\0, btx is integer valued so that
1

2
⩾
btxi+1

btxi
may happen at most log2(∥b∥1) times. From that point onward, only

1

2
⩾
hi+1

hi
may occur so

that 0 ⩽ hi < ε after at most log2

(
∥a∥1
ε

)
iterations since h0 = atx0 − k.

302



26.2 Multi-objective combinatorial optimization: Pareto fronts and efficient paths

Suppose we have n objects with d quantifiable attributes. We would like to find the objects that can’t be
improved on every aspect.

Pareto efficiency and fronts:

Recall that for vectors vi ∈ Rd, we have vi ⩽ vj if this holds on all coordinates, and vi < vj if
vi ⩽ vj and vi ̸= vj , so that at least on inequality is strict. For n such vectors, we call vi Pareto
efficient/maximal if there is no vj with vi < vj . The set of Pareto maximal vectors is called the Pareto
front. We have similar notions for minimality.

For example among
(
2

0

)
,

(
2

1

)
,

(
1

2

)
and

(
0

4

)
only

(
2

0

)
is not maximal, as

(
2

0

)
<

(
2

1

)
, and the other

3 vectors consitute the Pareto front. For a visual representation of pareto maximality, draw the vectors
and visualise the definition ()and make a connection to convexity)

The problem of finding the Pareto front is somtimes called the maximum vector problem. We present
a brute force and a numerical algorithm for the problem.
In brute force, we can loop on i of a candidate set C initialized as [n] and then on j > i of C to check
whether vi < vj or vi > vj , or none of both, with d comparisions each time. If vi < vj doesn’t occure, we
can add vi to the pareto front, and if vi > vj occurs, then we can delete j from C, as it can’t be maximal
so there is no point in checking further. The algorithm works be because when i is considered, we didn’t
delete it from the candidate set in the previous iterations, so it’s not dominated by lower index vectors,
and we then add i to the front if it isn’t dominated by the rest of the vectors with greater index. A crude
bound on time is O

(
n2d
)
.

Our next algorithm is numerical and linear in n, but exponential in the dimension and the vector size.
We assume our vectors to be integer valued and let M = max

i
(∥vi∥∞) + 1, so that all vectors are in the

interior of a square of length M . The idea is that once we have found one maximum vector vi, we know
that there are no vectors in the quadrant

(
vi + Rd

+

)
\vi and that we can ignore those in the quadrant(

vi + Rd
−

)
. This leaves 2d − 2 quadrants to consider for further invesitagtion. Since we deal with integer

vectors in the interior of the square, we know that the other vectors of the remaining quadrants are in
squares of size M−1 at most. We thus use a divide and conquer approach. To divide, we seek a particular
maximum vector to cut the cube into quadrants. A particular type of maximum vector is a lexicographi-
cally maximum one, wrt. some lexicographic order: it can be found in O(dn) time by repreated search of
(all) maxima on the coordinates (bubble-sort, storing all the occurances of the same value). All maximum
vectors will then by considered b the algorithm, as they always in the quadrants that we don’t ignore.
If T (M) is the worst case ruuntime of the algorithm, we have T (M) ⩽

(
2d − 2

)
T (M − 1) + dn,

where we assume that T is increasing since we can solve the same problem in larger squares. There-
fore T (M) ⩽ 2dM + dn2M+2 and this is an O

(
2dM + dn2M+2

)
algorithm suited for a large number of

vectors, few criteria represented by a small integers.

Multi-obcjective shortest path:
We’ll now see that some algorithms can be adapted to a multi-objective setting, in which we seek Pareto
efficient versions of an object. For the multi-objective shortest path problem, edge costs are now vectorial
with d criteria, and the cost of a path is the sum of the vector costs of its edges. We seek all the Pareto
minimal paths form a source s to a target t (or more precisely any other vertex).

In the following, we assume positive costs. This way, walks that contain cycles arn’t efficient, as the

303



walk without the cycle is has less cost in every criterion, hence the walk is dominated and can’t be mini-
mal. This also holds if we assume to that there are no negative cycles for all criteria.

The key link between multi-objective shortest paths and the regular one is sub-path efficiency. If an
s-t-path P is minimal then for any r on the path Ps→r must be minimal. This is because for vectors
v, u, w we have equivalence between v < u and v + w < u+ w, so that replacing Ps→r by a pareto-better
one from v to r would yield a better walk, hence a better path.

We’ll actually restrain ourselves to finding one particular efficient s-t-path. This is because there may
be a large amount of them: indeed, if we set all costs to be the zero vector, then all paths have cost zero,
hence all are efficient, and we’d have to enumerate paths, of which there can be an amount exponential in
the graph size (for example in a necklace of squares).
Still, this doesn’t mean that we can discard efficient paths in the course of our algorithm, as the following
example shows:

s

t

(
2

0

) (
2

0

)

(
0

2

) (
0

4

)

(
0

0

)

v (
0

0

) (
4

1

)

(
0

6

)

In this example, arrived at v from s, the two possible paths are incomparable with the top costing
(
4

0

)
and the bottom costing

(
0

6

)
. If we discard the top one, then by taking bottom and then top or bottom,

we get s-t-paths of costs
(
0

12

)
and

(
4

7

)
respectively. They are incomparable among each other, but the

second one is actually not efficient ! Indeed, it’s dominated by the top-top path of cost
(
4

6

)
. So unlike

for the regular shortest paths, we have to keep track of all efficient paths, in a sense.

We will now adapt Dijkstra’s to this multi-objective setting. We will use vertex labels lP which will
indicate the cost and the predecessor on an efficient s-v-path P . We collect them in a set label set Lv,
as we’ll keep track of multiple efficient paths. We adapt Dijkstra as follows: at each step, we consider all
possible paths to vertices of the frontier and compute their Pareto front.
FIX/INCLUDE: there is no control on the number of paths we consider for this pareto front...
We then expand on the vertices of that front by considering their neighbours (one-by-one on th front). If a
neighbour u isn’t among the explored or frontier vertices, then we label it with the path that is the s-v-path
followed by (v, u), marking v as predecessor, and add u to the frontier. Otherwise, if the neighbour u is
in the frontier, we check if the s-v-path followed by (v, u) is dominated by a path from the labels of Lu,
and if it isn’t we add this path to the labels. In any case, we mark the v of the pareto front as explored.
Once t is selected for this operation, we stop the algorithm.

The algorithm terminates since at each step one more vertex becomes explored, and the frontier is only
empty once we’ve considered all the connected component of s. We now show that it works correctly, by
showing the loop invariant that at each step, the path of the labels of a vertex that becomes explored in
that iteration, has only explored vertices in it, and is in fact an efficient one for all paths of the graph. For
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the first part, note that we add edges to paths that lead to unexplore vertices, or vertices in the frontier,
who we expand upon only when they’re selected to be explored.
Now, assume for contradiction that v has been selected to be explored, so that it has a label in Lv that is
not dominated in the frontier at that iteration, but that the path P of the label isn’t efficient in the graph.
We consider an s-v-path P ′ that dominates it, in the sense that c(P ′) < c(P ). We consider the iteration
where v becomes explored at its start, so that v is still considered to be in the frontier. We consider
the first vertex u on P ′ that isn’t explored. Since in general for all iterations, the neighbours of explored
vertices are either explored or in the frontier by the end of the iteration, u must be in the frontier at the
beginning of the iteration. By sub-path optimality, we have c(P ′

s→u) ⩽ c(P ′), so that c(P ′
s→u) < c(P ).

But P ′
s→u is a path among the labels of Lu: this contradicts that c(P ) was in the Pareto front of the costs

of all paths from all labels of vertices of the frontier, as its dominated by a path leading to u in the frontier.

FIX/COMPLETE: with Borndörfers paper or searching for Martin’s algorithm...
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26.3 Combinatorial optimization under uncertainty: frugal algorithms

Thesis Sahil
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26.4 Online combinatorial optimization

Online optimization problems are problems in which the problem data is given sequentially, where at each
step, an online algorithm has satisfy a certain requirement given a set of possible actions.
We’ll look at two examples: online bipartite maximum matching and the online k-server problem.

In the online bipartite maximum matching problem. We’re given a set of nodes V . Sequentially, we’re
given vertices of a set U , the size of which we don’t know. We’re given edges connecting the new vertex u
to vertices of V , which we didn’t know at a previous point of the algorithm. At each step, we must match
u to a vertex of V , if this is possible, and we can’t modify the previously selected edges.

An algorithm that solves this problem consists of matching the u to any unmatched v, at each itera-
tion. This will produce a maximal, but not necessarily maximum matching. To see maximuality, assume
there is an edge {u, v} that we could at to the matching after termination: then u wasn’t matched in the
iteration when it showed up, despite v being available, which contradicts our algorithm.

We know from the matching section, that for a maximal matching m and a Maximum matching M ,
we have |M | ⩽ 2|m|. So the matching obtained with our algorithm is larger then half of the maximum

possible value. Here, we say that our algorithm has competitivity ratio
1

2
.

In fact, no online algorithm can have a better ratio for this problem. Indeed, consider the following in-
stances on nodes v1, v2 and u1, u2, where u1 is connected to both v1 and v2. The instances differ in the fact
that in one, u2 is connected to v1, while in the other it is connected to v2. An arbitrary online algorithm
recieving u1 must match it to v1 or v2. In the first case, the first instance yields a final matching with
one edge only, and in the second, it’s the second instance that does. Yet, in both instances the maximum

matching has size 2. So the competitivity ratio of this algorithm must be at least
1

2
.

COMPLETE: k Server lower bound, not all approx are online (ex: knapsack density)

In the k-server problem, we’re given a connected graph G of size |V | > k, with positive edge weights,
so that we can define a metric d on V given by the legths of the shortest paths between vertices. We have
k servers, that we initially place on vertices of the graph (we may place multiple on the same vertex). For
an unknown number n or sequential requests, we’re given a vertex u at each request. We must satisfy
the request by moving a server to that vertex, if there isn’t a server on the vertex already. In fact, we
may move as many servers as we like in one iteration. The cost of that iteration will be the total distance
travelled by the servers in that round (0 if no moves were made).

We’ll investigate the strategy of moving the closest server to the vertex ui at which there is a request
in iteration i. We’ll give a simple analysis for the instances in which at least k + 1 different vertices of V
recieve requests (so in particular n ⩾ k + 1). This will force any algorithm (even offline, in the sense that
it knows the sequence of requests before their appearance) to move at least one server at some point. This
gives lower bound dmin on the cost of these instances, where dmin > 0 is the minimum distance between
pairs of vertices in G. We’ll next use a very crude upper bound on the cost incurred by our algorithm:
each move costs at most dmax, the maximum distance between pairs of vertices in G, so that the cost of
our algorithm is at most ndmax. If alg is the cost of our algorithm, and opt is the minimum cost for the
instance, then we have alg ⩽ ndmax and dmin ⩽ opt, from which we can get a crude competitivity ratio

with alg ⩽ n
dmax

dmin
opt.

We’ll mention how to solve the offline version of the k-server problem, for the fun of it.
Similarly to cops and robbers, we’ll reduce the number of servers as follows. We consider a graph P on ver-
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tices V k that represent the list of vertices where the servers are at. Its edges are {(v1, ..., vk), (u1, ..., uk)},
where {v1, u1}, ..., {vk, uk} are either edges of the graph G, or have vi = ui, so that moving along that
edge corresponds to moving (or keeping in place some of) the k servers along these edges in G. We exclude
loops though. The cost of such an edge is the sum of the weights of edges {v1, u1}, ..., {vk, uk} (think as
0 if vi = ui), so that the cost corresponds to moving alll k servers. They are also positive.

We will now reduce the problem to a shortest path problem. We create n copies of the graph P , that we
connect in a line as in the figure below, where wPi and wPi+1 correspond to the same vertex in P . We also
add a source s and a target t:

s
t

... ... ... ...
...

Pi Pi+1

wPi wPi+1

We give edges incident to the source cost 0. In the layers between copies of P , we give edges cost k(dmax+1),
except for some particular ones. It will be the edge corresponding to (copies) vertices of P , that have form
w = (v1, ..., vk), where one of the vi is the request of stage i, which we give cost 0. Essentially, we penalize
not having a server at the requested vertex. We finish by doing the same for edges incident to t from the
last copy of P .

Now, a shortest s-t-path must correspond to servers satisfying all requests. Indeed, it’s always better
to move servers so that at least one satisfies the request, which corresponds to moving in the copy of P ,
to then move to the next copy of P with an edge with weight 0, then to do something else, resulting in
using an inter-copy-edge of weight k(dmax + 1) which is mode then any cost of any movement in the copy
of P .
So the cost of this shortest path, which must only edges of weight 0 on the inter-copy-edges, is also the
cost of the k-server instance. Since any k-server solution can be represented as a path in this model, the
shortest path also represents the minimum k-server solution.
Note that the gadget we use is polynomial in the size of the problem, and shortest path can be solved in
polynomial time, to that offline k-server is in P.
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26.5 Solutions
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27 Submodular optimization

27.1 Basics, examples, extensions

Submodular functions:

Given a finite set U and its power set 2U , a submodular function is a function f : 2U → R
that satisfies f(A) + f(B) ⩾ f(A ∪B) + f(A ∩B).

An example of a submodular function and a corresponding optimization problem can be found in the
maximum cover problem. In it, we’re given n subsets Ai of a main set M , as well as positive weights
for the elements of M in the form of w : M → R+, where we denote w(Ai) =

∑
a∈Ai

w(a). The goal is to

find k ⩽ n indices in [n] in the form of S ⊆ [n] so a to maximise f(S) = w(∪i∈SAi).

To see that f is submodular, we start by writing;
f(S) + f(R) = w(∪i∈SAi) + w(∪i∈RAi) =

∑
a∈∪i∈SAi

w(a) +
∑

a∈∪i∈RAi

w(a)

f(S ∪R) + f(S ∩R) = w(∪i∈S∪RAi) + w(∪i∈S∩RAi) =
∑

a∈∪i∈S∪RAi

w(a) +
∑

a∈∪i∈S∩RAi

w(a)

In the sum
∑

a∈∪i∈SAi

w(a)+
∑

a∈∪i∈RAi

w(a), an element a is accounted for precisely once, if either there is an

Ai with i ∈ S such that a ∈ Ai, but there is no j ∈ R such that a ∈ Aj , which implies that i /∈ R, so that
i ∈ S\R, or by similar arguments, i ∈ R\S. An element a is accounted for precisely twice when there are
i ∈ S and j ∈ R so that a ∈ Ai and a ∈ Aj , with possibly i ̸= j.

In the sum
∑

a∈∪i∈S∪RAi

w(a) +
∑

a∈∪i∈S∩RAi

w(a), an element a is accounted for precisely once, if there is

an Ai with i ∈ S ∪ R such that a ∈ Ai, but i /∈ S ∩ R, on which case it’s accounted for twice. This is
equivalent to i ∈ S\R or i ∈ R\S. As mentioned, an element a is accounted for precisely twice, if there is
an Ai with i ∈ S ∩R ⊆ S ∪R such that a ∈ Ai.

We now see that the difference in accounting between the sums. the a accounted twice in the sum of
f(S ∪R)+ f(S ∩R) are all also accounted twice for the sum of f(S)+ f(R) by considering the case i = j.
The reverse for the twice accounted a may however not be true. Since weights w are positive, the possible
a accounted twice in f(S)+ f(R) not accounted twice in f(S ∪R)+ f(S ∩R) make the latter sum larger,
so that f is submodular.

Ex.CuSu: We consider a hypergraph (X,H) with positive hyperedge weights w : H → R+. For a
set of vertices A ⊆ X, the cut induced by A are the hyperedges containing both a vertex of A, and a
vertex not in A. Such a cut has weight W (A) =

∑
h∈H:h∩A ̸=∅,h∩(X\A)̸=∅

w(h). Show that this is a submodular

function.

An important concept is that of:
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Marginal value:

For a submodular f and a set A ⊆ U , we define its marginal value function as fA : U → R
through fA(a) = f(A ∪ a)− f(A).
When f is submodular and we extend it to fA(X) = f(A∪X)−f(A) for X ⊆ U , we have fA submodular.

Proof: To see that fA is submodular when f is, consider f(A∪X)−f(A)+f(A∪Y )−f(A) and compare
it to f(A∪ Y ∪X)− f(A) + f((X ∩ Y )∪A)− f(A). But by noting that A∪ Y ∪X = (A∪ Y )∪ (A∪X)
and (X ∩ Y ) ∪A = (X ∪A) ∩ (Y ∪A), this can be done directly from submodularity of f .

We’ll now discuss a first approach to solving the maximum cover problem.
We’ll try out the following greedy algorithm. Until we have obtained a set of indices of size k, we add
elements to the current candidate set S by choosing among those that yield greatest marginal return fS(a)
in the sense that we move to the next iteration by setting S := S ∪ a for a = argmaxa/∈SfS(a) (take one
if multiple maxima) until S has size k.

Greedy max cover:

The greedy algorithm is a 0, 6321 ≈ (1− 1
e )-approximation algorithm for the max cover problem.

Proof: We denote by Si the set produced by the greedy algorithm at iteration i, which contains i ele-
ments. We consider a set C achieving the maximum of this finite maximisation problem. We’ll study the
difference f(C) − f(Si). To relate it to argmaxa/∈Si

fSi(a), we seek a bound in which the fSi(a), which
we’ll find with a couple of tricks. The first remark is that for disjoint A and B, submodularity and the
case that f(∅) = 0 yield f(A ∪B) ⩽ f(A) + f(B). Doing this recursivly for the elements that constitue a
set, we get f(A) ⩽

∑
a∈A

f(a). Now, to use this on the fSi of our problem, which we know to be submodular,

since f is, we have to check that fSi(∅) = 0, which is the case.
To compare f(C) − f(Si) and fSi , we’ll use the following trick f(C) − f(Si) ⩽ f(C ∪ Si) − f(Si) =
f((C\Si) ∪ Si) − f(Si) = fSi(C\Si), where the first inequality follows from the fact that in our prob-
lem, due to weights being positive, f is increasing under inclusion, so that f(C) ⩽ f(C ∪ Si). With
the previous trick, we have fSi(C\Si) ⩽

∑
a∈C\Si

fSi(a). So we have the first intermediate result that

f(C)− f(Si) ⩽
∑

a∈C\Si

fSi(a).

The rest of the proof is easier. Since max
a/∈Si

fSi(a) ⩾ fSi(a) for a ∈ C\Si in particular, we get f(C)−f(Si) ⩽

|C\Si|max
a/∈Si

fSi(a). Next, since |C\Si| ⩽ |C| = k as C is optimal feasible, we get f(C) − f(Si) ⩽

kmax
a/∈Si

fSi(a). So if ai attains the maximum, so that Si+1 = Si ∪ ai, then
1

k
(f(C)− f(Si)) ⩽ fSi(ai).

Finally, we can get an inductive bound on (f(C)− f(Si)), by noting that f(Si) = f(Si−1) + fSi−1(ai−1),

so that f(C)− f(Si) ⩽ f(C)− f(Si−1)− fSi−1(ai−1) ⩽

(
1− 1

k

)
(f(C)− f(Si−1)).

A quick induction yields f(C)−f(Sk) ⩽
(
1− 1

k

)k

(f(C)−f(∅)). Smoothing things of with
(
1− 1

k

)k

⩽

1

e
, and noting that f(Sk) is the value of the greedy algorithms output, and f(∅) = 0 in our problem, we

can conclude.
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Extensions:
An idea for solving or approximating submodular problems is to use relaxations. If we identify the power
set 2U to the vertices of the |U |-cube [0, 1]|U |, which are the elements of {0, 1}|U |, we can try to get a
similar notion to the integer hull of an IP, if we can extend a submodular f to input values of [0, 1]|U |.

A first idea would be to seek a linear extension, in the sense that if we have convex combination∑
S∈2U

λS1S = x for x ∈ [0, 1]|U |, where 1S is the vertex corresponding to set S, we’d have function value∑
S∈2U

λSf(S). However, there isn’t always a unique way of writing x as a convex combination of vertices of

[0, 1]|U |, which leads our definition to be problematic. A small clever adjustment does the job however.

Convex extension:

We define the convex extension of a submodular f to be

fC(x) = min

∑
S∈2U

λSf(S) :
∑
S∈2U

λS1S = x,
∑
S∈2U

λS = 1, λ ⩾ 0


It’s convex.

Proof: First, note that the minima in the definition are attained, as we’re dealing with a compact, non-
empty set. Next, take x and y in the cube, and simplex points λ and µ representing them as convex
combinations respectively. Then, to investigate fC(tx+ (1− t)y), note that tλ+ (1− t)µ is also a simplex
point, which represents tx + (1 − t)y. By the minimum in the definition, we have fC(tx + (1 − t)y) ⩽∑
S∈2U

(tλS +(1− t)µS)f(S), so that by distributing, we get fC(tx+(1− t)y) ⩽ tfC(x)+(1− t)fC(y), which

is convexity.

Minimising the convex fC on the hypercube provides a lower bound on the minimum of f . Indeed, all
values of f can be attained on the vertices of the cube by fL, where there is a unique convex combination
representing the vertex, which has all its support on the set it represents. Form here, on could consider
rounding methods in the hope of getting approximation algorithms for submodular problems. However,
note that we don’t know if fC is differentiable, and worse, computing the value of the convex relaxation
requires solving an LP on a large hypercube. So we can’t use classic convex optimization algorithms.

Another approach is to define the relaxation value as an average. This yields good results:

Lovász extension:

We define the convex extention of a submodular f to be fL(x) =
∫ 1

0
f({i : xi ⩽ t})dt.

We can compute this value explicitely, finding sets S0 = ∅ ⊊ S1 ⊊ ... ⊊ Skx−1 ⊊ [|U |] = Skx and

corresponding scalars such that fL(x) =
kx∑
i=0]

λif(Si), where λ is a simplex point (a distribution).

Indeed, we can sort the xi ∈ [0, 1] in increasing order with permutation π so that xπ(i) is increasing in i.
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Then
∫ 1

0
f({i : xi ⩽ t})dt =

|U |∑
i=0

∫ xπ(i+1)

xπ(i)

f({i : xi ⩽ t})dt (with xπ(0) = 0 and xπ(|U |+1) = 1), and since

{i : xi ⩾ t} stays the same on [xπ(i), xπ(i+1)[, we have fL(x) =
|U |∑
i=0

(xπ(i+1) − xπ(i))f({j : xj < xπ(i+1)}).

As xπ(i) is increasing and xπ(0) = 0 and xπ(|U |+1) = 1, the sequence λi = (xπ(i+1) − xπ(i)) forms a simplex
point. The corresonding sets are Si = {j : xj < xπ(i+1)}, which forms an inclusion increasing sequence, as
Si+1 = Si ∪ {π(i+ 1)}.
FIX: inequality directions and strictness, strictness of inclusion (same coord),...

We could show that this extension is convex for submodular f , however this follows from the follow-
ing stronger result:

Extensions coincide:

For submodular f , we have fL = fC .

Proof: In order to relate the two concepts, we’ll elucidate the convex combination defining fL. We had
a convex combination with coefficients λ indexed by an increasing sequence S1 ⊆ ... ⊆ Sn. Does this

combination relate to x ? The coefficients had for λSi = xπ(i+1) − xπ(i). If we now consider
n∑

i=1

λSi1Si ,

then we note that by inclusion of the Si, the sequence of a coordinate in the sequence 1Si starts at 0, at
which it stays until it becomes 1 (at the Si where the corresponding element is added), where it stays for
the rest of the sequence. The result is that the coordinate in the sum will be 1−xπ(i), where i is the stage
at which the coordinate sequence turned to 1, due to telescopic cancellations. Since for our sequence Si,

precisely xπ(i) is added at stage i, we have
n∑

i=1

λSi1Si = 1U − x.

FIX: order so that sum is
n∑

i=1

λSi1Si = x, same problem as for definition of lovasz extension

We then see that the convex combination in the Lovasz extension is of the type considered in the minimi-

sation problem defining the convex extension, since
n∑

i=1

λSi1Si = x. This yields in particular fC ⩽ fL.

We can now try to establish a sort of converse: is a convex combination attaining the minimum in
the definition of the convex extension, that happens to correspond to an increasing chain S1 ⊆ ... ⊆ Sn
(with one element added at a time), actually the convex combination from the Lovasz extension ?

This turns out to be true. If our starting assumptions are
n∑

i=1

λSi1Si = x and S1 ⊆ ... ⊆ Sn, then we can

show that λSi = xπ(i+1)−xπ(i). This is due to the system
n∑

i=1

λSi1Si = x being triangular: if we order the

elements in their order of apperance, in S1 ⊆ ... ⊆ Sn, the system has form λ(0|T ) = x, where T is upper
triangular with diagonal an upper entries all 1.
So we can show that fC = fL, if we can display a convex combination attaining the minimum in the
definition of the convex extension, that happens to correspond to an increasing chain S1 ⊆ ... ⊆ Sn (with
one element added at a time) in terms of support.
We can do this with a tricky technique. Assume λ is a convex combination attaining the minimum in
the definition of the convex extension. It doesn’t satisfy the chain condition when we can find two sets
A and B in its support so that A ⊈ B and B ⊈ A. Note that for wlog λA ⩾ λB, we can rewrite the
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combination λA1A+λB1B = (λA−λB)1A+λB1A∪B +λB1A∩B, by accounting contributions with tableau
A\B B\A A ∩B

(λA − λB) 0 (λA − λB)
λB λB λB
0 0 λB

.

For this new convex combination, the objective
∑
S∈2U

λSf(S) can only have decreased, due to submodular-

ity, as λAf(A)+λBf(B) = (λA−λB)f(A)+λB(f(A)+f(B)) ⩾ (λA−λB)f(A)+λB(f(A∪B)+f(A∩B)).
Since the original λ attained the minimum already, so does this new convex combination.
The main idea now is to use this shift as follows. On the space of convex combination attaining the
minimum in the definition of the convex extension, we’ll seek one maximising a strictly supermudular one.
Performing the shift on it will yield a contradiction to maximality, provided A ⊈ B and B ⊈ A, so that
this maximum solution must obey the chain condition.
The supermodular function we’ll maximise is

∑
S∈2U

λS |S|2. Indeed, we have |A ∪ B|2 + |A ∩ B|2 ⩾

(|A| + |B\A|)2 + (|B| − |B\A|)2, the right side simplifying to |A|2 + |B|2 + 2|B\A|(|A| − |B| + |B\A|),
which is strictly greater then |A|2 + |B|2, as |A| − |B|+ |B\A| < 0, when A ⊈ B and B ⊈ A.
Using |A ∪ B|2 + |A ∩ B|2 > |A|2 + |B|2 and the shift, we’d get a convex combination still attaining the
minimum, but one with greater value for

∑
S∈2U

λS |S|2, contradicting maximality. Hence, it’s impossible to

have set with A ⊈ B and B ⊈ A in the support of the maximum combination, so that the chain condition
is satisfied.

We now introduce one more extension. It’s also based on the notion of average, but under a different
distribution:

Multilinear extension:

The multilinear extension is defined by fM (x) =
∑
S∈2U

f(S)
∏
i∈S

xi
∏
i/∈S

(1− xi).

This is the expectation of f(R), where R is a random set obtained by taking element i of U with probability
xi, independently of each other. It has the following properties:

Multilinear extension properties:

• It’s multilinear.

• If f is inclusion increasing, then fM satisfies ∂ifM ⩾ 0, so that in particular it’s increasing along any
vector in the positive quadrant.

• If f is submodular, then ∂2ijfM ⩽ 0, so that in particular it’s concave along any vector in the positive
quadrant.

• If f is submodular, then it’s convex in directions of for ei − ej for i ̸= j.

Proof: To see multilinearity, note that by develloping, on sees that the function is a sum of monomials,
which are multilinear. Next, f f is increasing, then since ∂jfM (x) =

∑
S∈2U :j∈S

f(S)
∏

i∈S\j

xi
∏
i/∈S

(1 − xi) −
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∑
S∈2U :j /∈S

f(S)
∏
i∈S

xi
∏

i/∈S,i̸=j

(1−xi), where the first sum can be rewritten as
∑

S∈2U\j

f(S ∪ j)
∏
i∈S

xi
∏
i/∈S

(1−xi)

and the second as
∑

S∈2U\j

f(S)
∏
i∈S

xi
∏
i/∈S

(1− xi), we get positivity due to f(S ∪ j) ⩾ f(S).

If f is submodular, then since ∂2kjfM (x) =
∑

S∈2U :j,k∈S

f(S)
∏

i∈S\j,k

xi
∏
i/∈S

(1−xi)+
∑

S∈2U :j,k/∈S

f(S)
∏
i∈S

xi
∏

i/∈S,i̸=j,k

(1−

xi) −
∑

S∈2U :j /∈S,k∈S

f(S)
∏

i∈S\k

xi
∏

i/∈S,i̸=j

(1 − xi) −
∑

S∈2U :k/∈S,j∈S

f(S)
∏

i∈S\j

xi
∏

i/∈S,i̸=k

(1 − xi), for j ̸= k and

∂2kjfM (x) = 0 for k = j, we can for the first case rewrite the sums by indexing them over 2U\j.k, so
that we can group them under a sum that is the expectation of f(S ∪ j, k) + f(S)− f(S ∪ k)− f(S ∪ j),
which are negative by submodularity, since (S∪k)∪(S∪j) = S∪j, k and (S∪k)∩(S∪j) = S, since j ̸= k.

Note that by definition of fM as a convex combination, we have fM ⩾ fC = fL.
We conclude with the remark that evaluating the multilinear extension and its derivatives takes exponen-
tial time in |U |. Due to its nature of being the expectation of a random variable, one can however find
good approximations of its value through sampling.
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27.2 Submodularity and polyhedra

Polymatroids:

To a submodular f , we can associate a polyhedron called the (extended) polymatroid
Pf =

{
x : xA ⩽ f(A), ∀A ∈ 2U

}
.
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27.3 Maximisation
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27.4 Minimisation

Schrijvers algorithm from Korte-Vygen
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27.5 The continuous greedy algorithm

We consider n agents and m items, where agent i has valuation (willingness to pay) wi(S) for set S ⊆ [m],
a bundle of items. We assume wi ⩾ 0, wi(∅) = 0 ("normalized"), increasing under inclusion ("free dis-
posal"), and submodular (decreasing marginal gain).
Our goal is to allocate the items into n sets Si so as to maximise the welfare/revenue of allocating bundle
Si to agent i, which is

∑
i∈[n]

wi(Si). We can rewrite the problem as choosing a set S ⊆ [n]× [m] consisting

of pairs (i, j), corresponding to us giving item j to agent i, so that S must satisfy ∀k ∈ [m], |{(i, j) ∈ S :
k = j}| ⩽ 1,meaning that each item is give to at most one agent.
COMPLETE: show matroid stuff, partition matroid Vondrack lectures with Ei = i× [m].
Then f(S) =

∑
i∈[n]

wi({j ∈ [m] : ∃(i, j) ∈ S}) is a submodular function as a sum of such functions, which

in turn are submodular since {j ∈ [m] : ∃(i, j) ∈ A∪B} ⊆ {j ∈ [m] : ∃(i, j) ∈ A} ∪ {j ∈ [m] : ∃(i, j) ∈ B}
and similarly for the inclusion, and we use monotonicity of wi.

We’ll study a randomised allocation scheme in which we give item j to agent i with probability xij ,
so that since we also have the possibility of keeping the item, we have constraints x ⩾ 0 and

∑
i∈[n]

xij ⩽ 1,

forming polytope P . We expect to get welfare F (x), which is the multi-linear extension of f , that we hope
to maximise as a function of the distribution.
The problem is therefore a non-convex one, but one that is based on submodularity.

We’ll study a type of gradient flow algorithm that uses an initial value problem to define a function
of feasible solution. We take as initial point x(0) = 0, which is feasible (we keep all items) and set up
differential equation x′ = V (x), where V (x) = argmaxv∈P

(
vt∇F (x)

)
is piece-wise constant.

COMPLETE: use stability of LP to get this point...
We let x move in the direction that increases the first-order approximation of F the most. The condition
v ∈ P will ensure that we move slower near the boundary, and that x ∈ P , as we’ll show later.

The continuous greedy algorithm:

For an optimal value OPT = max(F (y) : y ∈ P ) and the solution x to the IVP, we have x(1) ∈ P and

F (x(1)) ⩾

(
1− 1

e

)
OPT , so that this is an

(
1− 1

e

)
-approximation algorithm for the problem.

An immediate question is how to use this algorithm in practice. We can use a numerical approximation
of the IVP defining x. In that case, V (x) can be computed by solving an LP at all approximation points
of x of the scheme. The numerical scheme will also impact the feasibility of the approximation of x(1), as
well as the approximation ratio.

Proof: Note that
1

t
x(t) ∈ P for all t ∈]0, 1]. This can be seen by writing x(t) = 0 +

∫ t

0
V (x(s))ds,

where the latter integral is the limit of Riemann sums, which when scaled by
1

t
can be interpreted as

convex combinations of point of V (x) ∈ P , so that the limit is also in the closed convex P . In particular
x(1) ∈ P .
We will first bound V (x), before working with the differential equation. We will use the properties of the
multi-linear relaxation of the submodular monotone f that we gave in the introductory chapter.
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We consider the point v ∈ P attaining the maximum OPT , and try to relate it to x and F (x). To do that,
we’ll study ϕ(s) = F (x + sd) for a direction d ⩾ 0 and s ∈ [0, 1], as we know it to be concave. To relate
to v, we choose di = max(vi − xi, 0) ⩾ 0. Now, ϕ(0) = F (x), and ϕ(1) = F (x+ d) ⩾ F (v) = OPT , since
F is increasing along directions D ⩾ 0, and here D = (x+ d)− v ⩾ 0 since max(vi − xi, 0) ⩾ vi − xi. By
concavity, ϕ(1) − ϕ(0) ⩽ ϕ′(0)(1 − 0), where ϕ′(0) = dt∇F (x). Now, since ∇F ⩾ 0 and 0 ⩽ d ⩽ v

(if max(vi − xi, 0) ⩽ vi since xi ⩾ 0 as we assume
1

t
x(t) ∈ P and v ⩾ 0 as v ∈ P ), we have

dt∇F (x) ⩽ vt∇F (x). Finally, by its definition, V (x)t∇F (x) ⩾ vt∇F (x), so that joining bounds yields
V (x)t∇F (x) ⩾ OPT − F (x).
We can now bound the differential equation, starting by the study of F (x(t))′ = x′(t)∇F (x(t)) =
V (x)∇F (x(t)). Indeed, we have F (x(t))′ + F (x(t)) ⩾ OPT by the previous bound. Multiplying by
et, we can see

(
etF (x(t))

)′
⩾ etOPT , so that eF (x(1)) − F (x(0)) ⩾ OPT (e − 1) after integration, and

using x(0) = 0 and F (0) = 0 (since wi(∅) = 0), we finally get the desired bound after dividind by e.
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27.6 Solutions

Ex.CuSu: To see that W (A ∪ B) +W (A ∩ B) ⩽ W (A) +W (B), we will do some accounting on the
edges considered. We’ll disjoin hyperedges on which kind of vertices they contain. The types of vertices
of interest are those of A∩B,A\B,B\A, and X\(A∪B), as these types partition the vertices X, and we
can deduce X\A = (X\(A ∪ B)) ∪ (B\A), for example. In the following table, we disjoin hyperedges, so
that on the left, × denotes the type of edge that contains vertices of the corresponding column set. We
enumerate all 24 − 1 possibilities. On the right, × denotes the sums (corresponding column), to which
these types of hyperedges contribute:

A ∩B A\B B\A X\(A ∪B) W (A ∪B) W (A ∩B) W (A) W (B)
× × × × × × × ×

× × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × ×

× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × × × ×
×

×
×

×

For example, for edges containing element of A\B,B\A, and X\(A ∪B) but not A ∩B (line 2), we the
edge contains elements of A,B and X\(A∪B), but not A∩B, so that it contributes to W (A∪B), W (A)
and W (B) but not W (A ∩B).
We see that in all cases, the edge is accounted more or equally in W (A) +W (B) then in W (A ∪ B) +
W (A ∩B). Since weights are positive, this means the latter sum is bigger.
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28 Discrepancy theory

28.1 Definitions, examples, properties

We want to perform a causal inference test on a group of n volunteers. We will split the volunteers into
two groups of people, the first of which will take a drug, while the second one won’t. We will then note the
effect of having taken the drug, and compare it to results of the control group. The problem in this type
of situation is limiting the effect of parameters others then having or not taken the drug. For example, if
we split groups arbitrarily, we run the risk of one group happening to contain a specific behavior that the
other doesn’t, that will impact our observation of the effects of the drug, despite being unrelated to the
drug.
Numbering volunteers from 1 to n, we can gather medical or socio-economic data from participants, so as
to get groups Si ⊆ [n] for i ∈ [m], if we consider m aspects to group people into. For example, S1 can be
an age group of peple over 70, S2 can be the group of people that weigh more then 70 kg, S3 the group
of people having had a surgery in their life, etc. The goal is to split these people into two groups (for
the drug study) as "balanced" as possible, in the sense that the split induced on the groups Si should be
balanced.
We can model the problem as follows: we consider a labeling l : [n] → {−1, 1} to determine the two

groups, and consider the unbalance

∣∣∣∣∣∣
∑
j∈Si

l(j)

∣∣∣∣∣∣ (number of people more in the majoritary group) for each

category Si. To get a balanced biparition wrt. the categories, we can look for a labeling l that minimises

the greatest unbalance, in the sense that we seek min
l:[n]→{−1,1}

max
i

∣∣∣∣∣∣
∑
j∈Si

l(j)

∣∣∣∣∣∣
.

Combinatorial discrepancy:

For a family Si ⊆ [n] for i ∈ [m], the problem min
l:[n]→{−1,1}

max
i

∣∣∣∣∣∣
∑
j∈Si

l(j)

∣∣∣∣∣∣
 is known as the

combinatorial discrepancy problem.

The example of an application we gave above is such a problem, and we’ll see more applications in a later
section. We now discuss a seemingly unrelated problem.

In numerical integration, one can estimate an integral
∫
A
f(x)dx by an average

1

n

n∑
i=1

f(xi) for some

well distributed sample points xi ∈ A. We know from the Riemann integral that for large n, this estimate
will be good, for well distributed sample points, but an interesting question is what sample points to use,
for a fixed number n of them, so that the approximation is good.

For A = [0, 1]d, we seek a point set that mimics a uniformly distributed one as good as possible, without
actually performing randomization. As a measure of quality of a sampling point set P , we can com-

pare the expected number of points in some rectangle R =
d∏

i=1

[ai, bi] ⊆ A under uniform sampling to

the actual number of such points |P ∩ R|, and look for the greatest difference between the two over
all rectangles. For an idd. sequence of n points uniformily chosen in A, the probability of that point

being in R is vol(R) =
d∏

i=1

(bi − ai), so that we expect n.vol(R) points to be in R (linearity of expecta-
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tion over indicators). We’ll consider the measure of quality sup
R=

∏d
i=1[ai,bi]⊆A

|n.vol(R) − |P ∩ R|| (supre-

mum exists as we can bound by 2n), and seek an n point set P minimising it so that we want to find

inf
P ⊆ A
|P | = n

(
sup

R=
∏d

i=1[ai,bi]⊆A

|n.vol(R)− |P ∩R||

)
. More generally, we have:

Geometric discrepancy:

For a set A and a family F ⊆ 2A of measurable subsets of A, the geometric discrepancy prob-

lem is to find D(A,n, F ) = inf
P ⊆ A
|P | = n

(
sup
S∈F
|n.vol(S)− |P ∩ S||

)
.

We denote by D (P,A, n, F ) the argument of the infinimum.

The relation to numerical integration is due to the Koksma-Hlawka inequality, which states that∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

n

∑
x∈P

f(x)

∣∣∣∣∣ = O

(
1

n
D
(
P, [0, 1]d, n, F

))
for a certain family of rectangles F and under

certain assumptions on f . Therefore, seeking small discrepancy improves the approximation. Proving
the Koksma-Hlawka inequality is a long and involved process, so we’ll prove a much softer version as an
excuse. A proof of the full inequality can be found on page 151 of "Uniform distribution of sequences" by
Kuipers and Niederreiter (1974).

Excuse of a Koksma-Hlawka inequality:

For d = 1, an f ∈ C1([0, 1]), and the family F of segements of [0, 1], we have∣∣∣∣∣
∫
[0,1]

f(x)dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ⩽ 1

n
∥f∥∞D(P, [0, 1], n, F ) + 2∥f ′∥∞

(
1 +

1

n

)

Proof: We consider P to be the sequence x1, ..., xn ∈ [0, 1] and partition [0, 1] into interior disjoint

segments containing a single xi each: wlog. x1 < ... < xn such as S1 =

[
0, x1 +

x1 + x2
2

]
, S2 =[

x1 +
x1 + x2

2
, x2 +

x2 + x3
2

]
, ..., Sn =

[
xn −

xn−1 + xn
2

, 1

]
does the job, for example.

We upper-bound

∣∣∣∣∣
∫
[0,1]

f(x)dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ by
1

n

n∑
i=1

∣∣∣∣n ∫
Si

f(x)dx− f(xi)
∣∣∣∣ (with the triangular inequal-

ity). Next, by the mean value theorem there are mi ∈ Si such that
∫
Si

f(x) = vol(Si)f(mi), and by the

choice of the Si, we have |P ∩ Si| = 1, so that
∣∣∣∣n ∫

Si

f(x)dx− f(xi)
∣∣∣∣ = |n.vol(Si)f(mi)− |P ∩ Si|f(xi)|.

Next, with a first order Taylor approximation, Lipschitzness, vol(Si) ⩽ 1, and the triangular inequality,

we get a bound on the previous expression of
∣∣∣∣f (xi +mi

2

)∣∣∣∣D(P, [0, 1], n, F ) + 2∥f ′∥∞vol(Si)(n+ 1).
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Taking a final bound on f and taking the average

(
1

n

n∑
i=1

)
, we then find that

∣∣∣∣∣
∫
[0,1]

f(x)dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ⩽
1

n
∥f∥∞D(P, [0, 1], n, F ) + 2∥f ′∥∞

(
1 +

1

n

)
, since the vol(Si) sum up to 1.
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28.2 Continuous discrepancy
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28.3 Combinatorial discrepancy

The Beck-Fiala method:
To get minimum possible discrepancy of 0, one could solve the system

{∑
j∈Si

xj = 0 : i ∈ [m] , hoping
to find a solution x ∈ {−1, 1}n, that would correspond to a labeling giving discrepancy 0. We may not
get integer points, but we can, when there is a solution, find one in the n-cube [−1, 1]n (scale the original
solution so as to get a unit vector).

This is why the Beck-Fiala method works with a relaxation of the problem in which labels l(j) ∈
{−1, 1} are replaced by variables xj ∈ [−1, 1]. The idea of te method is to maintain subsystems of{∑

j∈Si
xj = 0 : i ∈ [m] as long as possible, while adapting the solution to such a system to have one

more ±1 coordinate at eacg iteration. We start with initial solution x0 = 0, maintaining a set Mk ⊆ [m]

of sets Si at iterations k such that
{∑

j∈Si
xkj = 0 : i ∈Mk , where xk is the curent iterate. We let

M0 = [m]. Over the course of the algorithm, we’ll have Mk+1 ⊆ Mk. Another point is that we’de like to
keep ±1 coordinate at those values, once xkj reaches those values over the iterations k. We’ll thus define
a set Fk ⊆ [n] of "floating" variables that haven’t reached values ±1, and call those that have, those of
[n]\Fk, "safe". We start with Fk = [n], since x0 = 0.

To determine xk+1 so as to keep safe variables safe, we’ll solve system
{∑

j∈Si∩Fk
xj +

∑
j∈Si\Fk

xkj = 0 : i ∈Mk+1

for x, letting xk+1
j =

{
xkj : j ∈ Si\Fk

x∗j : j ∈ Si ∩ Fk

for one solution x∗ of that system that we’ll determine in a mo-

ment. This way, loop invariant
{∑

j∈Si
xk+1
j = 0 : i ∈Mk+1 is maintained in the next step. We know

that there is a solution for x to the previous system since xj = xkj does the job, as Mk+1 ⊆ Mk. How-
ever, the xkj is what we wanted to improve upon in terms of ±1 coordinates. So we seek a condition
for the system to have at least a 1-dimesnional line of solutions. This way, we can consider a point on
the intersection of that line with the boundary of the cube [−1, 1]|Fk|: such a point x∗ is a solution to∑
j∈Si∩Fk

x∗j +
∑

j∈Si\Fk

xkj = 0 : i ∈ Mk+1 and has at least one of its coordinates at value ±1 (this is what it

means to be on the boundary of the cube). This is the x∗ we use to get xk+1. We get Fk+1 from Fk by
deleting from it the variables who’s value in x∗ is ±1, as they are now safe.

To find x∗ in practice, we solve
∑

j∈Si∩Fk

xj +
∑

j∈Si\Fk

xkj = 0 : i ∈ Mk+1 with Gaussian elimination,

getting a representation of (some) solutions of form xkFk
+ Rd for some direction d ̸= 0. We then solve

−1 ⩽ xkFk
+ td ⩽ 1 for the largest t > 0 by max

j∈Fk


1−xk

j

d : d > 0
−xk

j−1

d : d < 0

.

We now seek a condition that will guarantee that the solutions to
{∑

j∈Si∩Fk
xj +

∑
j∈Si\Fk

xkj = 0 : i ∈Mk+1

contain at least a line, which is the case if
{∑

j∈Si∩Fk
xj = 0 : i ∈Mk+1 does (translate by xkFk

), which
in turn is the case if there are more variables then contraints, aka. |Mk+1| ⩽ |Fk|. This can be ensured
by making assumptions on the sets Si and by choosing the Mk the right way. We’ll get this bound by
a combinatorial argument called double-counting. We image the bipartie graph with vertices Mk+1 and
Fk, where we connect i ∈ Mk+1 and j ∈ Fk by an edge if j ∈ Si. We have

∑
i∈Mk+1

deg(i) =
∑
j∈Fk

deg(j).

If we know that for our set-system, any j can be in at most t different sets Si, then deg(j) ⩽ t so that
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∑
j∈Fk

deg(j) ⩽ t|Fk|. This will be our assumption on the set-system. In a similar vein and to eliminate

t in the comming inequality, we’d like deg(i) ⩾ t, which can be achieved by letting Mk+1 be the sets Si
containing at least t floating variables in iteration k, in the sense that |Si ∩Fk| ⩾ t. This is coherent with
Mk+1 ⊆ Mk, as the number of floating variables decreases, so that Fk+1 ⊆ Fk, hence the |Si ∩ Fk| can
only get smaller, and the i’s such that |Si ∩Fk| ⩾ t become fewer. We then have

∑
i∈Mk+1

deg(i) ⩾ t|Mk+1|,

from which |Mk+1| ⩽ |Fk| will follow.

Finally, we can discuss the analysis of the method. The algorithm terminates as the number of float-
ing variables decreases to 0 in time O(n). How low of a discrepancy do we get ? Recall that the idea was
to keep the sets at "relaxed-discrepancy" for as long as possible. The only time from which

∑
j∈Si

xkj ̸= 0

may occur is when i /∈ Mk. By our definition of Mk, this happens when |Si ∩ Fk| < t. This meanst that
for the rest of the algorithm, only at most t variables of Si may still change value. At the final stage, we’ll

have

∣∣∣∣∣∣
 ∑

j∈Si∩Fk

xnj +
∑

j∈Si\Fk

xnj

−
 ∑

j∈Si∩Fk

xkj +
∑

j∈Si\Fk

xkj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

j∈Si∩Fk

xnj − xkj

∣∣∣∣∣∣ ⩽ 2|Si ∩ Fk| < 2t, via

a triangular inequality and the fact that we’re in [−1, 1], where xnj = xkj on j ∈ Si\Fk, since the variables
where safe from that iteration onward and didn’t change value.
Summarizing, we get:

The Beck-Fiala method:

The Beck-Fiala method provides a labeling of the combinatorial discrepancy problem for sets Si
such that any j ∈ [n] is in at most t of the Si, such that a discrepancy of value at most 2t− 1 is achieved.
It does so deterministicly in time O(n).

We can actually get a better result with a simple randomization:

Uniform random labeling:

If we label the elements independently uniformily at random with ±1,
then with probability at least

1

2
, we get a labeling of discrepancy less then

√
2n ln(2m).

Proof: If we label the elements uniformily with ±1, then with probability at least
1

2
, we get a labeling of

discrepancy less then
√

2n ln(2m).

This is because discrepancy perfectly fits the Chernov bound in that case, which is p

∣∣∣∣∣∣
∑
j∈S

Xj

∣∣∣∣∣∣ > λ
√
|S|

 ⩽

2e−λ2/2, where Xj is the label of j, and has expected value 0 in this setting. Using this for the Si and

λ =
√
2 ln(2m) provides p

∣∣∣∣∣∣
∑
j∈Si

Xj

∣∣∣∣∣∣ >√|Si|2 ln(2m)

 ⩽
1

2m
.
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With a union bound, p

∪i∈[m]

∣∣∣∣∣∣
∑
j∈Si

Xj

∣∣∣∣∣∣ >√|Si|2 ln(2m)

 ⩽
∑
i∈[m]

p

∣∣∣∣∣∣
∑
j∈Si

Xj

∣∣∣∣∣∣ >√|Si|2 ln(2m)

 ⩽

1

2
so that taking negation leads to p

∩i∈[m]

∣∣∣∣∣∣
∑
j∈Si

Xj

∣∣∣∣∣∣ ⩽√|Si|2 ln(2m)

 ⩾ 1− 1

2
=

1

2
. Finally, since

∩i∈[m]

∣∣∣∣∣∣
∑
j∈Si

Xj

∣∣∣∣∣∣ ⩽√|Si|2 ln(2m)

 implies ∩i∈[m]

∣∣∣∣∣∣
∑
j∈Si

Xj

∣∣∣∣∣∣ ⩽√n2 ln(2m)

,the latter has probability

at least
1

2
, and it is that of discrepancy being at most

√
n2 ln(2m).

INCLUDE: Rothvoss algorithm
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28.4 Advanced applications

Applications to approximation algorithms (rothvoss bin packing) and numerical integration.

329



28.5 Solutions
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29 Inverse problems

29.1 Examples

Inverse problems generally study problems surrounding equations y = f(x) from numerical and proba-
bilistic viewpoints. They’re best described by examples:

X-ray tomography:
X-ray tomography is a method that allows to reconstruct 3D objects (so also their interior) in a certain
sense from a series of images of the object taken with light in the X-ray spectrum. If we consider an object
with material density given by the map f : R3 → R+, then we can place an X-ray source at xs ∈ R3 and a
receptor at xr ∈ R3 and shoot X-rays from xs to xr in a straight line. When the X-rays come into contact
with the object, a part of them is absorbed or deflected. We consider this portion to be proportional
to the material density at that point, so that the intensity of the ray satisfies I ′(x) = −f(x)I(x) for
x ∈ [xs, xr] (for a fixed density, the more photons arrive, the more get deflected, hence the term in I). We

get ln
(
I(xs)

I(xr)

)
=

∫ 1

0
f(xs + t(xr − xs))dt, where the left term is known to us, as we set and collect these

values. A single such ray gives little information on the object, which is represented by f , as many f can

satisfy ln

(
I(xs)

I(xr)

)
=

∫ 1

0
f(xs + t(xr − xs))dt. However, if we shoot multiple different rays intersecting

each other, we hope to constrain f enough so that a solution to the equations we set will be close to the
real material density map.

For simplicity, we will discretize the problem and use convenient rays. We imagine our object to be
in a cube in the positive orthant in space, and consider a grid of lattice points lZ3 ∩ [0,M ]3 where l is
the grid length and M is the size of the cube the object is in. We will shoot rays in directions ei for all 3
dimensions i, as well as diagonal rays in directions ei± ej for pairs of dimensions (never in opposite direc-
tions, as we’d get the same measurements). There are for a grid of n3 points a total of 3n2 grid parallel
rays, each meeting n grid-points of form l(i, j, k) for just one coordinate varying. There are 6n(2n + 1)
diagonal rays that meat q points, for q = 0, ..., 2n or q = −n, ..., n, of form l(i, j, k) where one of the
coordinates, say k, is fixed and where the other two satisfy i± j = q.
We could also have added rays non-parallel to orthant planes. Here is a picture in dimension 2:

[4]× {3}

i+ j = 5 {4} × [3]

i− j = 3

We will consider the material density at grid point l(i, j, k) to be fijk. We then discretize the integrals

over the rays as Rieman sums. For grid-parallel rays, we get for example
n∑

k=1

lfijk, and for diagonal ones∑
i±j=q

l
√
3fijk. We then seek to solve a linear system of form Af = m, where m are the X-ray intensity

measurements corresponding to the rays. For dense discretizations, so large n, the number of variables n3

will surpass the number of constraints 3n2 + 6n(2n+ 1) by a long shot.
FIX: actually LP feasibility due to positivity.
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29.2 Deterministic case

Müller Siltanent SIAM book, chapters on truncated SVD and Tikhonov regularization
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29.3 Probabilistic case

Part 1 of "Inverse Problems and Data Assimilation" in folder "InversePorblems"
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29.4 Solutions

30 Basics in functional optimization

30.1 Calculus of variations

We focus on the following functional optimization problem:

Problem:

For a function f : C1(R3 → R), we which to minimise F (y) =
∫ b

a
f(x, y(x), y′(x))dx

over all functions y ∈ C1(a, b) satisfying y(a) = ya and y(b) = yb.

For example, when we seek the shortest path between two points on a surface, if we can parametrize the
surface with a smooth ϕ : R2 → R3 and the points are ϕ(ya) and ϕ(yb), then we’re looking for curves the
surface of form ϕ ◦ y where y ∈ C1(a, b) satisfies y(a) = ya and y(b) = yb and the length of the curve

F (y) =

∫ b

a
∥(ϕ ◦ y)′(x)∥dx =

∫ b

a
∥Dy(x)ϕ(y

′(x))∥dx is minimum.

The Euler-Lagrange equation:
Euler initially derived this necessary condition for a y to be an optimum to the problem by discretising it
and analysing the "asymptotic conditions" that come from the first order condition on the finite problems.
Lagrange derived it from a similar argument to the finite dimensional case, as we now develop.

If y is a local optimum of F , then by mimicking the finite dimensional first order condition derivation,
we consider a variation h ∈ C1(a, b) with h(a) = h(b) = 0, and analyse the one dimensional H : R → R
defined by H(t) = F (y + t.h). For this function, we expect 0 to be a local minimum.
A local minimum y∗ of F over the solution space is a function such that for all y in the solution space
with ∥y∗ − y∥N ⩽ ε for some ε and some function space norm ∥.∥N , we have F (y∗) ⩽ F (y). For the
moment, we’ll ignore the dependency of this notion on the function norm and take ∥.∥N = ∥∥∞,[a,b].

Then 0 is a local minimum of H since ∥y − (y + t.h)∥N = |t|.∥h∥N ⩽ ε for |0 − t| ⩽ ε

∥h∥N
, so that

H(0) = F (y) ⩽ F (y + t.h) = H(t). Note that we assumed y to be a local minimum over the solution
space, but since y + t.h satisfies the smoothness and boundary conditions, we get the desired result.

We can then use the first order condition on the one dimensional case, provided that H ∈ C1.
The latter is the case, and the derivation formula for parameterised integrals and the chain rule yield

H ′(t) =

∫ b

a
(h(x).∂2f(x, y(x) + t.h(x), y′(x) + t.h′(x)) + h′(x)∂3f(x, y(x) + t.h(x), y′(x) + t.h′(x)))dx.

We can simplify this expression with partial integration, as
∫ b

a
h′(x)∂3f(x, y(x)+t.h(x), y

′(x)+t.h′(x))dx =

[h(x)∂3f(x, y(x) + t.h(x), y′(x) + t.h′(x)))]ba−
∫ b

a
h(x)∂x∂3f(x, y(x) + t.h(x), y′(x) + t.h′(x))dx, as h(a) =

h(b) = 0, so that H ′(t) =

∫ b

a
h(x)(∂2f(x, y(x) + t.h(x), y′(x) + t.h′(x)) − ∂x∂3f(x, y(x) + t.h(x), y′(x) +

t.h′(x)))dx, by assuming (with loss of generality) that y, h, f ∈ C2.

In particular, H ′(0) =

∫ b

a
h(x)(∂2f(x, y(x), y

′(x))− ∂x∂3f(x, y(x), y′(x)))dx.

334



So for a local minimum y over the solution space, the first order condition must hold for all variations h, we

have for all h ∈ C2(a, b) with h(a) = h(b) = 0,
∫ b

a
h(x)(∂2f(x, y(x), y

′(x))− ∂x∂3f(x, y(x), y′(x)))dx = 0.

As in the finite dimensional case, we’ll show that this implies that ∂2f(x, y(x), y′(x))+∂x∂3f(x, y(x), y′(x)) =
0. Unfortunately, contrary to the finite dimensional case, we don’t have a basis of C2, nor do we have the
guarantee that ∂2f(x, y(x), y′(x)) + ∂x∂3f(x, y(x), y

′(x)) is 0 at a and b.

The idea is that we can choose h to be a function that acts as an indicator function, or a basis vector if we
follow the analogy to the finite case, by having a small support. For a point p ∈ (a, b), we can set hp,δ(x) ={(
x− p+ δ

2

)3 (
p+ δ

2 − x
)3
on

[
p− δ

2 , p+
δ
2

]
0 else

. Note that hp,δ(x) > 0 on
(
p− δ

2
, p+

δ

2

)
. The analogy

to the basis vector is that if there was a p ∈ (a, b) such that ∂2f(p, y(p), y′(p)) + ∂x∂3f(p, y(p), y
′(p)) > 0

or ∂2f(p, y(p), y′(p)) + ∂x∂3f(p, y(p), y
′(p)) < 0, then by using variation ±hp,δ(x) for δ small enough so

that the sign of ∂2f(x, y(x), y′(x)) + ∂x∂3f(x, y(x), y
′(x)) doesn’t change on

(
p− δ

2
, p+

δ

2

)
, we have the

condition
∫ b

a
hp,δ(x)(∂2f(x, y(x), y

′(x)) + ∂x∂3f(x, y(x), y
′(x)))dx =

∫ p+ δ
2

p− δ
2

±hp,δ(x)(∂2f(x, y(x), y′(x)) +

∂x∂3f(x, y(x), y
′(x)))dx = 0, which is impossible as the integrand is positive on the integration segment.

For this argument to work we need to show that hp,δ(a) = hp,δ(b) = 0 and hp,δ ∈ C2. The first con-

dition is achieved if
[
p− δ

2
, p+

δ

2

]
⊊ (a, b), which is the case. The second condition requires us to check

that the first and second derivatives are 0 at p ± δ

2
, which is the case since all terms contain either(

x− p+ δ

2

)
or
(
p+

δ

2
− x
)

in their factors.

Summarizing:

Euler-Lagrange:

If F (with f ∈ C2) has a C2 local minimum y over the boundary value solution space, then it
must be a solution to the differential equation ∂2f(x, y(x), y

′(x)) − ∂x∂3f(x, y(x), y
′(x)) = 0, which is

called the Euler-Lagrange equation.

Ex.EP: We consider the functional F (y) =

∫ b

a
f
(
x, y(x), y′(x), ..., y(n)(x)

)
dx with f ∈ C2 to be op-

timised over the space of functions y ∈ C2n satisfying boundary constraints of type y(i)(a) = ya,i and
y(i)(b) = yb,i for i ∈ {0, ..., n− 1}. Show that a local extremum must satisfy the Euler-Poisson equation
∂2f(x, y, ..., y

(n))− ∂x∂3f(x, y, ..., y(n)) + ...+ (−1)n∂nx∂n+2f(x, y, ..., y
(n)) = 0.

Ex.ELV: We consider the functional F (y) =

∫ b

a
f(x, y1(x), ..., yn(x), y

′
1(x), ..., y

′
n(x))dx with f ∈ C2

to be optimised over the space of vectors Y of functions yi ∈ C2 satisfying boundary constraints of
type yi(a) = ya,i and yi(b) = yb,i for i ∈ [n]. Show that a local extremum must satisfy the equations
∂i+1fi(x, Y, Y

′)− ∂x∂i+n+1f(Y, Y
′) = 0 for all i ∈ [n].

Ex.ELMD: We consider the functional F (u) =

∫
A
f(x, y, u(x, y), ∂1u(x, y), ∂2u(x, y))da with f ∈ C2
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to be optimised over the space of functions u ∈ C2 satisfying boundary constraints u|∂A = v for compact
set A ⊆ R2 such that ∂A can be parameterized by a single smooth curve. Show that a local extremum
must satisfy the equations ∂3f − ∂x∂4f − ∂y∂5f = 0.

Constraints:

We now constrain the problem with G(y) =
∫ b

a
g(x, y(x), y′(x))dx = l in addition to the boundary values

constraint, with g ∈ C2. Our goal is again to reduce this to a finite dimensional problem by considering
variations. The problem is that for variations h with h(a) = h(b) = 0, we may not necessarily have∫ b

a
g(x, y(x) + t.h(x), y′(x) + th′(x))dx = l, yet all we’re assuming is that y is a local minimum among all

functions satisfying G(y) = l
A clever trick can then be used if we investigated the effect of multidimensional variations. Indeed, for y to

be a local minimum, (0, 0) has to be a local minimum of H(t, s) =

∫ b

a
f(x, y(x)+ t.h1(x)+s.h2(x), y

′(x)+

t.h′1(x) + s.h′2(x))dx, for variations satisfying hi(a) = hi(b) = 0. The study of the first order condition
just leads back to the regular Euler-Lagrange equation.

However, requiring V (t, s) =

∫ b

a
g(x, y(x) + t.h1(x) + s.h2(x), y

′(x) + t.h′1(x) + s.h′2(x))dx− l = 0 is more

interesting as it defines a manifold. In fact, we may apply the implicit function theorem to V arround

(0, 0) since its C1 and since ∂2V (0, 0) =

∫ b

a
h2(x)(∂2g(x, y(x), y

′(x)) − ∂x∂3g(x, y(x), y′(x)))dx (same in-

tegration by parts as for the unconstrained case), which we can ste to be non-zero if y doesn’t satisfy the
Euler-Lagrange equation for g as we can set h2 to be an "indicator" of a non-zero valued point .We get
the existence of p ∈ C1 such that there is a inteval ]− ε, ε[ on which V (t, p(t)) = 0.
Now we have the result that 0 is a local minimum for H(t, p(t)).
TO CONCLUDE: Lagrange multipliers or variation with expression of p via IFT.

Second variation:
We’ve considered the first order condition on H to be a necessery condition for a local minimum, but

there’s also the second order condition. For H(t) =

∫ b

a
f(x, y(x)+th(x), y′(x)+th′(x))dx, we can compute

the second derivative at 0 to be H ′′(0) =

∫ b

a
h(x)2.∂22f(x, y(x), y

′(x)) + 2h(x)h′(x).∂2,3f(x, y(x), y
′(x)) +

h′(x)2.∂23f(x, y(x), y
′(x))dx, assuming that f ∈ C2. Now if y is a local minimum of F , then it’s required

that H ′′(0) ⩾ 0, in addition to the first order condition. We can make this last condition more digestible,
just like we did for the first order condition by deriving the Euler-Lagrange equation.

Legendre condition:

If y is a local minimum of F , then in addition to it solving the Euler-Lagrange equation, we must
have ∂23f(x, y(x), y

′(x)) ⩾ 0 on [a, b].

Proof: We will prove the contrapositive. So we assume that there is an xn in [a, b] for which ∂23f(xn, y(xn), y
′(xn)) <

0, and we want to show that there is a variation h such that H ′′(0) < 0, so that for some small enough
t’s, we have F (y + th) < F (y), and therefore y isn’t a local minimum.

To simplify notation, we’ll write H ′′(0) =

∫ b

a
h(x)2P (x) + 2h(x)h′(x)Q(x) + h′(x)2R(x)dx where P (x) =

∂22f(x, y(x), y
′(x)), Q(x) = ∂2,3f(x, y(x), y

′(x)) and R(x) = ∂23f(x, y(x), y
′(x)).
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The starting point of the proof is that the integrand in H ′′(0) looks like a square of a sum. To complete
the square however, we must handle P,Q,R. We will modify the expression with a clever trick: for any

w ∈ C1, we can use boundary conditions on h to deduce that
∫ b

a

(
2h(x)h′(x)w(x) + h(x)2w′(x)

)
dx =∫ b

a

(
h(x)2w(x)

)′
dx =

[
h(x)2w(x)

]b
a
= 0. By linearity on the integral, we can therefore introduce this

into H ′′(0) to get
∫ b

a
h(x)2(P (x) + w′(x)) + 2h(x)h′(x)(Q(x) + w(x)) + h′(x)2R(x)dx. The idea is

to use a clever w that will allow us to complete the square. First, we’d like to factor by R to get∫ b

a
R(x)

(
h(x)2

(P (x) + w′(x))

R(x)
+ 2h(x)h′(x)

(Q(x) + w(x))

R(x)
+ h′(x)2

)
dx. This may not be possible on

all of [a, b], as R may vanish. This is what leads us to consider the contrapisitive: by assumption
and continuity of R, we can find an interval ]c, d[⊆ [a, b] such that R < 0 on it, so that we can fac-
tor by R on it. As the goal is to find a variation h where the second order condition fails, we can
choose h as for the derivation of the Euler-Lagrange equation so as to be non-zero, with it and its
derivative vanishing outside of ]c, d[. For this variation, we can reduce the integral defining H ′′(0)
to the support of the integrand, which is contained in ]c, d[, so that we may factor by R and get

H ′′(0) =

∫ d

c
R(x)

(
h(x)2

(P (x) + w′(x))

R(x)
+ 2h(x)h′(x)

(Q(x) + w(x))

R(x)
+ h′(x)2

)
dx.

Finally, we can complete the square by letting w satisfy w′(x) = −P + (Q(x) + w(x))2, as we’d then

have H ′′(0) =

∫ d

c
R(x)

(
h(x)

Q(x) + w(x)

R(x)
+ h′(x)

)2

dx, the sign of which depends on R. There is one

subtlety (that escaped Legendre and was pointed out by Lagrange) we must take into account: the fact

that w′(x) = −P (x)+ (Q(x) + w(x))2

R(x)
defines a solution on all of [c, d]. This is not at all obvious when one

considers examples such as y′ = 2xy2 subject to y(0) =
1

b
> 0 which has solution y(x) =

1

b− x2
, which is

only defined on ] −
√
b,
√
b[, due to blowing up at the boundary. By continuity of the second derivatives

of f , Peano’s theorem provides the existence of a w such that w′(x) = −P (x) + (Q(x) + w(x))2

R(x)
for some

initial condition in ]c, d[, that is defined only on a subinterval of ]c, d[, of which we have no guarantee of
filling all of ]c, d[. We can however save the proof with this existence by replacing ]c, d[ by that subinterval.
Indeed, the chronology for determining ]c, d[ is to find an x ∈]a, b[ for which R(x) < 0, then determine

intervals around x where R < 0 and the solution to w′(x) = −P (x) + (Q(x) + w(x))2

R(x)
exists, take their

intersection, and define the variation h so as to vanish outside of that intersection.
To conclude, note that due to the square in the integrand and monotony of R on the interval, the sign of

H ′′(0) =

∫ d

c
R(x)

(
h(x)

Q(x) + w(x)

R(x)
+ h′(x)

)2

dx is negative, as we desired to show.
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30.2 Linear programming in function spaces

The problem:

We which to solve the functional linear programming problem inf

(∫ 1

0
g(t)u(t)dt

)
st.
∫ 1

0
fi(t)u(t)dt = βi and 0 ⩽ u(t) ⩽ 1 ae. on [0, 1], for some g, fi ∈ L1[0, 1] and βi ∈ R with

i ∈ [m], for the variable u ∈ L∞[0, 1].

The key point is that the objective and the constraints are linear/affine. We may not have the nice
structure of a polyhedral constraint set in infinite dimension, but we may still hope to develop a notion
of duality. The idea is that under duality, the number of constraints and variables is interchanged. So
for a linear functional optimization problem with finitely many constraints, we hope that the dual is a
finite optimization problem. We also hope that strong duality holds, so that one can exploit duality and
complementary slacknesss to solve the initial functional problem.

Recall that for integrable f ∈ L1[0, 1] and bounded g ∈ L∞[0, 1], we have a dot-product f · g =

∫ 1

0
f(t)g(t)dt.

In fact, for f ∈
(
L1[0, 1]

)d and g ∈ (L∞[0, 1])d we have dot-product f · g =
∑
i∈[d]

∫ 1

0
fi(t)gi(t)dt.

With these and any dot-products, we can generalize the notion of duality as follows:

Abstract duality:

For cones K ⊆ E and Q ⊆ F of vector spaces E and F , equipped with a duality ·, which is a
bilinear map · : E × F → R that is never constant in one argument, we define their dual cones as
K∗ = {g ∈ L∞[0, 1] : f · g ⩾ 0,∀f ∈ K} and Q∗ =

{
f ∈ L1[0, 1] : f · g ⩾ 0,∀g ∈ Q

}
.

For cones K ⊆ L1[0, 1] and Q ⊆ L∞[0, 1], we define their dual cones as

K∗ =

{
g ∈ L∞[0, 1] : f · g =

∫ 1

0
f(t)g(t)dt ⩾ 0,∀f ∈ K

}
and

Q∗ =

{
f ∈ L1[0, 1] : f · g =

∫ 1

0
f(t)g(t)dt ⩾ 0,∀g ∈ Q

}
(and similarly for the product spaces).

TO COMPLETE: Barvinok chapter 4
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30.3 Optimal control

The general optimal control problem is the following:

Problem:

We’re dealing with a dynamical system with parameter α(t), the "control", given by equation
x′(t) = f(x(t), α(t)) and initial condition x(0) = x0, from time t = 0 to time t = T . The con-
trol takes values in an action set A (which may be finite, or multi-dimensional) and we restrict
it to a set A ⊆ A[0,T ] of feasible controls, depending on the problem. One permanent condition on
A is that for all controls in it, the ODE x′(t) = f(x(t), α(t)) with x(0) = x0 has a unique solution on [0, T ].

We’re interested in finding a control α∗ that maximises a functional F (xα, α), where xα is
the solution to the ODE corresponding to α. For example, the functional can have form

F (xα, α) =

∫ T

0
r(xα(t), α(t))dt+ g(xα(T )).

Time optimal control for linear systems:
In time optimal control, we follow the system until it reaches a certain state and try to minimise the total
time spent reaching that state. If our goal is to reach a state in a set of target states S ⊆ Rd starting
from x0 with some control α, then we restrain the set of feasible controls to A ⊆ {α : ∃t ∈ R+, xα(t) ∈ S},
which may be empty.
On this set, τα = inf(t : xα(t) ∈ S) is finite (not +∞) and represents the first time we arrive at a target
state. We’ll then try to minimise τα over A, aka maximise τα over A.

We will focus on a particular case of this problem. We’re dealing with a linear system

{
x′ =Mx+Nα

x(0) = x0
,

for matrices M ∈ Rn×n and N ∈ Rn×m where the controls are piece-wise constant functions α : [0,∞)→
{−1, 0, 1}m with at most p jumps. Our target set will be the origin S = {0}. For such systems, we have a

nice analytic solution x(t) = etMx0 + etM
∫ t

0
e−sMNα(s)ds, where etM is the matrix exponential, which

can be computed explicitly using the Jordan normal form.

The first question is if the problem is feasible, that is, if there are controls that let the system reach
0. This is the case when x0 = 0, as we can chose α(s) = 0.

Actually since, xα(t) = 0 ⇔ etMx0 + etM
∫ t

0
e−sMNα(s)ds = 0 ⇔ x0 = −

∫ t

0
e−sMNα(s)ds, we see that

any α yields a feasible starting point, so that there seems to be a wide choice of solutions. The reverse
question, whether given an x0, we can tell if there is a control α leading it to the origin is a much more
difficult one.
Note that for a given x0, the number of controls α and times t for which the system starting at x0 reaches
the origin may not be unique. For the case p ⩾ 4, n = m = 2, M = 0 and N = I, and x0 = (1, 1), for

example, all controls α(s) =


(0,−1) : s ∈ [0, r]

(−1, 0) : s ∈ (r, r + 1]

(0,−1) : s ∈ (r + 1, 2]

(0, 0) else

for some r ∈ (0, 1) yield trajectories that reach
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the origin for all t ⩾ 2. Indeed, integration yields x(t) = (1, 1)+


(0,−s) : s ∈ [0, r]

(−s+ r,−r) : s ∈ (r, r + 1]

(−1,−s+ (r + 1)− r) : s ∈ (r + 1, 2]

(−1,−1) else

.

For all α such that the origin is eventually reached, the first arrival time τα is finite. The next ques-
tion is whether the infinimum τ of these times over all arrival times is reached by a certain α∗. To show

this we have to show that there is an α∗ verifying x0 = −
∫ τ

0
e−sMNα∗(s)ds.

To get it, we consider a (decreasing) sequence tk and associated αk, so that the tk converge to τ .

We then cut up x0 = −
∫ τ

0
e−sMNαk(s)ds −

∫ tk

τ
e−sMNαk(s)ds. Note that

∣∣∣∣∫ tk

τ
e−sMNαk(s)ds

∣∣∣∣ ⩽

√
n

∫ tk

τ

∥∥e−sMN
∥∥ ds ⩽ (tk − τ)

√
nmax

[0,t0]

(∥∥e−sMN
∥∥) (for an appropriate sub-multiplicative matrix norm),

so that the second term in the cut will converge to 0. Next, note that a subsequence of the αk will
"converge"! This is due to our restriction to piece-wise constant functions with at most p jumps. If the
jumps occur at points s1,k ⩽ .. ⩽ sp,k ∈ [0, τ ], then by successive extraction (Bolzano-Weierstrass), we can
assume them to converge to s1 ⩽ .. ⩽ sp respectively. With another layer of successive extractions on the
intervals [si,k, si+1,k], we can assume the functions to have the same value in {−1, 0, 1} on their respective
intervals, in that order. We can then set α∗ to have that value on the interval [si, si+1]. By cutting up∫ τ

0
e−sMNαk(s)ds on a grid given by both the si and si,k for large k, we can see that the parts of [0, τ ]

where αk and α∗ disagree decreases in total length to 0. So, after all this hand-waving, we can conclude

that by taking the limit, x0 = −
∫ τ

0
e−sMNα∗(s)ds.

We’ve tried to give a simplified version of the following result, which requires advanced functional analysis
such as Alaoglu’s theorem and the Krein-Millman theorem for a weak function space topology.

Bang-Bang-Principle:

For the time optimal control problem with integrable controls α : [0,∞) → [−1, 1]m, for each x0
from which the origin can be reached, there is a control α : [0,∞)→ {−1, 1}m achieving that trajectory.
Furthermore, the shortest time τ to reach the origin is achieved by a control α∗ : [0,∞) → [−1, 1]m and
therefore also by a control α∗ : [0,∞)→ {−1, 1}m.

A maximum principle:
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30.4 Solutions

Ex.EP:
For a local extremum y, we consider variations Vh(t) = F (y+ t.h) where h ∈ C2n satisfies h(i)(a) = 0 and

h(i)(b) = 0 for i ∈ {0, ..., n − 1}. The first order condition at t = 0 becomes
∫ b

a

n∑
i=0

h(i)∂i+2fdx = 0. We

then use repeated integration by parts to get rid of the higher derivatives of h, which we formally prove
by induction. The case n = 1 is the regular Euler-Lagrange derivation. For the step, assume that we

have
∫ b

a

n∑
i=0

h(i)∂i+2fdx =

∫ b

a
h (∂2f(y)− ∂x∂3f(y) + ...+ (−1)n∂nx∂n+2f) dx. Then by linearity of the

integral, we only have to show that
∫ b

a
h(n+1)∂n+3fdx =

∫ b

a
h(−1)n+1∂n+1

x ∂n+3fdx.

By integration by parts,
∫ b

a
h(n+1)∂n+3fdx =

[
h(n)∂n+3f

]b
a
−
∫ b

a
h(n)∂x∂n+3fdx and since h(n)(a) = 0

and h(n)(b) = 0, we get
∫ b

a
h(n+1)∂n+3fdx = −

∫ b

a
h(n)∂x∂n+3fdx. Repeating this partial integration on

h gets us the desired result.
To conclude the proof, we have to find a "smooth indicator" to replace h with to adapt the arguments from
the initial Euler-Lagrange derivation. If we consider the original h from the Euler-Lagrange derivation, we
note that the powers hm and its m first derivatives are polynomials that vanish at a and b, since h does,
and are therefore smooth. Thus h2n does the job for this problem.

Ex.ELV:
This time, we consider variations of form VH(t) = F (Y + t.H) where H ∈ C2 is a vector of variations. the

first order condition becomes
∫ b

a

(
n∑

i=1

Hi∂i+1fi(x, Y, Y
′) +H ′

i∂i+n+1f(Y, Y
′)

)
dx = 0. By considering Hi

to be the variation h of the initial Euler-Lagrange derivation and Hj ̸=i = 0, we recover the Euler-Lagrange
equations for each function ∂i+1fi(x, Y, Y

′) − ∂x∂i+n+1f(Y, Y
′) = 0 for all i ∈ [n] by following the Euler

Lagrange derivation.

Ex.ELMD:
Again, we study a variation Vh(t) = F (u+ t.h) for h ∈ C2 such that h|∂A = 0. The first order condition

is
∫
A
(h∂3f + ∂1h.∂4f + ∂2h.∂5f)da = 0. Instead of integration by parts, we aim to use its 2-variable

equivalent, Green’s theorem:
∫
A
(∂1Q + ∂2P )da =

∫
∂A

(−P,Q)dl. If h is present in both functions in

Greens formula, we can make use of h|∂A = 0.
To make the derivatives of Greens theorem appear, we use the product formula ∂xh.∂4f = ∂x(h.∂4f) −
h.∂x∂4f and ∂yh.∂5f = ∂y(h.∂5f) − h.∂y∂5f to get

∫
A
(h∂3f + ∂1h.∂4f + ∂2h.∂5f)da =

∫
A
h(∂3f −

∂x∂4f − ∂y∂5f)da +

∫
A
(∂x(h.∂4f) + ∂y(h.∂5f))da. Using Greens theorem on the second integral yields∫

A
(∂x(h.∂4f) + ∂y(h.∂5f))da =

∫
∂A
h(−∂5f, ∂4f)dl = 0, as we planned.

Thus the first order condition translates to
∫
A
h(∂3f − ∂x∂4f − ∂y∂5f)da = 0. Again, we have to find a

"smooth indicator" for h. If we denote by ho the function used in the original Euler-Lagrange derivation,
then h(x, y) = ho(x)ho(y) does the job, where the "indication" is over a square.
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31 Numerics of differential equations

31.1 Numerical quadrature
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31.2 Ordinary differential equations

Differential equations are equations on differentiable functions on a domain D, such as f(x, y(x),∇xy) = 0
to be solved for y : D → R, for example. Solving differential equations has fueled mathematics for a long
time. Some equations such as y′(x) + y(x)2 = 0 may have solutions in the form of rational functions,
on some maximum domain: in this example, y =

c

x
on ]0,∞[ for constants c ranging in R parametrising

the solution space. Others, such as y′ = y may have solutions that can only be represented as power

series (except for the 0 solution), as no rational function
P (x)

Q(x)
can solve the equation, for otherwise

P ′(x)Q(x) − P (x)Q′(x) = P (x)Q(x), which yields a contradiction on degrees unless P = 0. Yet, power
series may not converge at points where a solution is still existent. If we seek rational function solutions

for y′ − 1

x+ 1
= 0, then these solutions would have to solve the problem on intervals of form [k,∞[ since

P (x)

Q(x)
has only finitely many poles. But the equation (x+1)(P ′(x)Q(x)−P (x)Q′(x)) = Q(x)2 requires P

to have the degree of Q, so that lim
x→∞

P (x)

Q(x)
is a constant, contradicting lim

x→∞

∫ x

0

1

t+ 1
dt =∞ (which can

be show directly using divergence of the harmonic series). So the solution ln(1 + x) =

∫ x

0

1

t+ 1
dt, which

we know isn’t a rational function, still can be expressed as a Taylor series around 0. However, one can

show that the series diverges for x ⩾ 1, despite
∫ x

0

1

t+ 1
dt still being perfectly defined there.

In the line of increasingly pathological examples, equations such as y′ − e−x2
= 0, which despite be-

ing a simple integration problem, has no solution that can be expressed as a formula involving usual
functions, as differential Galois theory tells us.
The horror culminates in equations such as x3y′ − 2y = 0 may have solutions that can’t be expressed as
power series at particular points. Indeed if we prolong C : x 7→ e−

1
x2 and its derivatives by continuity at

0, we get Cauchy’s example of a C∞ function that isn’t its Taylor series at 0, and which solves x3y′−2y = 0.

Faced with this ineptitude to get a computable solutions, even when solutions are guaranteed to exist
by non-constructive theorems, mathematicians took increasing interest the field of numerical analysis,
now generally called numerics.

Euler, Runge-Kutta and multi-step methods:
For problems of the form y′(x) = f(x, y(x)) with an initial value y(x0) = y0 specified, we seek meth-
ods to estimate a possible solution y(x) at points other then x0. In its integral formulation y(x) = y0 +∫ x

x0

f(t, y(t))dt, we have quadrature methods for solving integrals at disposal. For example, with the (lower)

Rieman sums of form
∫ b

a
f(t)dt ≈ 1

h

∑
0⩽i⩽⌊h(b−a)⌋

f

(
a+ i

1

h

)
with step h, we can approximate y(x) =

y0+h
∑

0⩽i⩽⌊h(b−a)⌋

f

(
a+ i

1

h
, y

(
a+ i

1

h

))
. If we fix step length h, then we have y(x0+h) ≈ y0+hf(x0, y0),

and y(x0+2h) ≈ y0+hf(x0, y0)+hf(x0+h, y(x0+h)) ≈ y0+hf(x0, y0)+hf(x0+h, y0+hf(x0, y0)) and so
on. To keep things simple, we’ll consider approximations by a single term Rieman sum, so approximations
yk of y(x0 + kh) defined by yk = yk−1 + hf(xk−1, yk−1) for k ⩾ 1 and xk = x0 + kh: this is the Euler
scheme.

Another path to walk is keeping y(x0 + 2h) ≈ y0 + hf(x0, y0) + hf(x0 + h, y(x0 + h)) as heuristic and
turning it into approximation scheme yk = yk−2 + hf(xk−2, yk−2) + hf(xk−1, yk−1), where we need an
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estimate y1 of y(x0 + h) due to the double recurrence. This is an example of a multistep method.

We can also use different quadrature methods. For example, by linear interpolation, one can estimate∫ b

a
f(t)dt ≈ (b− a)

(
1

2
f(a) +

1

2
f(b)

)
for small intervals [a, b].

Then y(x0+h) ≈ y0+h

(
1

2
f(x0, y0) +

1

2
f(x0 + h, y(x0 + h))

)
. To turn this in an approximation scheme

in which we don’t have to solve a complicated equation at each step, we’ll approximate the inner y(x0+h)

by the Euler scheme, so that y(x0 + h) ≈ y0 + h

(
1

2
f(x0, y0) +

1

2
f(x0 + h, y0 + hf(x0, y0))

)
, and we use

approximations yk = yk−1 + h

(
1

2
f(xk−1, yk−1) +

1

2
f(xk−1 + h, yk−1 + hf(xk−1, yk−1))

)
. This is a (one

of a family of) Runge-Kutta schemes.

We’ll now discuss the convergence of one-step methods, which we’ll group under schemes of the form
yk+1 = yk + hϕ(yk, h). For example, for the Euler method, ϕ(yk, h) = f(xk, yk) (recall that xk implicitly
depends on h).

Consistency and convergence:
The immediate question is if the above approximations are any good.
To do this we will introduce some notions of errors:

Errors:

For a numerical method, we define the local error at x with step h to be le(x) = y(x + h) − y
where y is the solution the the initial value problem and y is the first approximation y1 of the solution at
point x+ h of the scheme, with initial point y0 = y(x).
The global error at step k for step length h is gek = y(x0 + hk)− yk, where yk is the approximation of
the solution at point x0 + hk of the scheme for the IVP, with y0 = y(x0).

Local error is easier to study then the global one, and will inform us on the global one via the following
notion:

Consistency:

A numerical method is consistent on [x0, xe] if we have max
k

(
le(xk)

h

)
h−→
0

0, where k ranges over

the number of grid-points of a grid of [x0, xe] with step-length h. It’s consistent with order p if

max
k

(
le(xk)

h

)
is O (hp) for all h, in the sense that there is a constant C independent of h such that∣∣∣∣max

k

(
le(xk)

h

)∣∣∣∣ ⩽ Chp.

The connection is:

Convergence:

We say that a numerical method converges if max
k

(gek)
h−→
0

0, where k ranges over the number of
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grid-points of a grid of [x0, xe] with step-length h. It does so with order p if there is a constant C
independent of h such that max

k
(gek) ⩽ Chp.

COMPLETE

Proof: COMPLETE

Lemma proof:
We show this by induction, using without proof the inequality 1 + δ ⩽ eδ for δ > 0.

For the base case n = 0, we remark that enδ|x0|+
enδ − 1

δ
β = |x0| ⩾ |x0|, so the base case is true. For the

step, assume that |xn| ⩽ enδ|x0|+
enδ − 1

δ
β.

Then from |xn+1| ⩽ (1 + δ)|xn|+ β, we get |xn+1| ⩽ (1 + δ)

(
enδ|x0|+

enδ − 1

δ
β

)
+ β by positivity. Next,

with 1 + δ ⩽ eδ we note that (1 + δ)enδ|x0| ⩽ e(n+1)δ|x0| and (1 + δ)
enδ

δ
β ⩽

e(n+1)δ

δ
β.

To bound
(
1 + (1 + δ)

enδ − 1

δ

)
β, we use the previous inequality and the fact that 1− 1 + δ

δ
=
−1
δ

to get(
1 + (1 + δ)

enδ − 1

δ

)
β ⩽

e(n+1)δ − 1

δ
β. Combining these bounds yields |xn+1| ⩽ e(n+1)δ|x0|+

e(n+1)δ − 1

δ
β,

thereby proving the induction step.

Forward Euler incremental is f ...
We’d like to remark that the Lipschitz assumption is rather strong, so that the theorem is rather weak for

the Euler scheme. For example, these assumptions exclude IVPs of the form y′ =

d∑
i=0

gi(x)y
i for d ⩾ 2

and gd(x) ̸= 0 on [x0, xe], since for a particular point x with gd(x) ̸= 0, this polynomial in y isn’t Lipschitz
as its derivative is unbounded on R.
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31.3 Partial differential equations
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31.4 Numerical methods for optimal control

Paper "SeqQuadProg..."
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31.5 Solutions
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32 Basics in stochastic optimization

32.1 Bandits

Consider a casino with a particular machine, a k-armed bandit (generalizing the real-life one-armed ban-
dit). It has k arms (actions) that we can choose sequentially, where at each step the choice results in a
reward Xa, distributed according to some pa, for action a ∈ [k]. Usually, we don’t know the distributions
pa, but we know some constraints on them. Our goal is to find a (possibly randomized) strategy/policy,
which is a way of choosing which arm to play at what iteration, that will maximise the expected total
reward of the game, if we play it for n turns.

Consider for example the following bandit. We’re given a connected graph with two target vertices and
are asked to select path between them at each turn. So here, actions/arms are paths between the two
vertices, and the action space A, of size k, is the set of these paths. Assume that each edge e is then
deleted with propability θe ∈ [0, 1], independently per edge. We win 1 if the path a is possible after the
deletions, and 0 otherwise. Hence, Xa is a Bernoulli variable, with parameter θa =

∏
e∈a

θe.

By a strategy/policy, we mean a family of distributions ((πhi
)hi∈Hi

)i∈[n] where hi is the history up
to turn i, in the sense that Hi = {(a1, x1, a2, ..., ai−1, xi−1) : aj ∈ A, xj ∈ Im(Xaj )}. So πhi

is a distribu-
tion over the actions A that we will use to select ai, where the previous actions and rewards are recollected
in hi = (a1, x1, a2, ..., ai−1, xi−1). Deterministic policies correspond to Dirac-distributed πhi

.

If we denote by Xi,π the reward at stage i when playin π, maximising E

(
n∑

i=1

Xi,π

)
is easy if we know

the distributions pa for all actions a ∈ A. Indeed, we have E

(
n∑

i=1

Xi,π

)
=

n∑
i=1

E
(
Xi,π

)
⩽ nmax

a∈A
E(Xa)

for all poilcies, and this bound is attained by the policy defined by πhi
(a) =

{
1 : a = argmaxa∈AE(Xa)

0 : else
for all histories hi, aka. the policy of playing the action with the best expected reward at each turn.

The situation becomes more intresting, when we don’t know the pa, so that we can’t compute the
E(Xa), but we still have some form of information on them. For example, in our graph example, we could
only know that the rewards are Bernoulli, but not know their parameters. These froms of constraints are
called problems with an environnement class.
In such a problem, we often can’t optimize over policies, but we can analyse particular policies, and bound
their performance for all cases of the environnement class. We’ll give an example of this in the next section.

We conclude with a definition that makes some expressions easier:

Regret:

For a bandit with reward distributions pa, playing n turns with policy π yields regret

Rn(π, (pa)) = nmax
a∈A

E(Xa)−
n∑

i=1

E
(
Xi,π

)
.

Maximising the reward is the same as minimising the regret.
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In a Bayesian version of bandits, we may have the knowledge over a distribution p over the parame-
ters, and seek a policy maximising the expected expected reward, where the first expectation ranges over
the parameters of the problem, in our running example the θa.
We then seek to minimise:

Bayesian regret:

For a distribution p over the parameters θ ∈ D of an environment class, the Bayesian regret is

BRn(π) =

∫
D
Rn(π, (pa)(θ))p(θ)dθ.
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32.2 Explore-then-commit algorithm for bandits

Consider the following intuitive strategy for the bandit problem with environnement class. We play each
of the k actions for m times, assuming mk ⩽ n, and fater the mkth turn, we look at the action that has
yielded the best result so far, and play that action for the rest of the rounds. This is an explore-then-
commit tactic as in the first phase, we explore the actions by playing them all a sufficient number of times
to tell estimate them, and then we commit to the best action we’ve observed so far, to get high rewards.

Formally, πhi
(a) =

{
1 : a =

⌊
i−1
m

⌋
+ 1

0 : else
for turns i ⩽ mk, where we simplify notation by letting A = [k]

directly, and πhj
(a) =

{
1 : a = argmaxa∈A

(∑
i:⌊ i−1

m ⌋+1=a xi

)
0 : else

for turns j > mk, models this strategy.

How good is this strategy ? Can we upper-bound its regret over all θ of the environment class ?
For our running example, we have:

Explore-then-commit for Bernoulli environment:

We’ll use the notion of:

Immediate regret:

We define the instant regret of action a to be ∆a = max
b∈A

E(Xb)− E(Xa).

We have Rn(π, (pa)) =
∑
a∈A

∆aE(Ta), where Ta =

n∑
i=1

χAi=a counts the number of times action a was

used, where Ai is the random variable representing the action played at turn i, so that Ai has distribution
πhi

.

Proof: Rn(π, (pa)) = nmax
a∈A

E(Xa) −
n∑

i=1

E
(
Xi,π

)
=

n∑
i=1

(
max
a∈A

E(Xa)− E
(
Xi,π

))
. By conditioning

E
(
Xi,π

)
=
∑
a∈A

E
(
Xi,π|Ai = a

)
P (Ai = a), and rewriting E

(
Xi,π|Ai = a

)
= E(Xa), we can rearange to

get the result (using max
a∈A

E(Xa) =
∑
a∈A

P (Ai = a)max
a∈A

E(Xa) and swapping sums along the way).

Proof of the bound: In Rn(π, (pa)) =
∑
a∈A

∆aE(Ta), we know that

E(Ta) = m+ (n−mk)P

a = argmaxa∈A

 ∑
i:⌊ i−1

m ⌋+1=a

Xi,π


, since a is played m times for certain in

the mk first turns, and is only played again if it had the best results so far. The whole problem reduces
to bounding the latter probability.

We can reformulate a = argmaxa∈A

 ∑
i:⌊ i−1

m ⌋+1=a

Xi,π

 as
∑

i:⌊ i−1
m ⌋+1=a

Xi,π ⩾
∑

i:⌊ i−1
m ⌋+1=b

Xi,π for all b ∈
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A, in particular b = argmaxc∈AE(Xc). We bound first with P

a = argmaxa∈A

 ∑
i:⌊ i−1

m ⌋+1=a

Xi,π


 ⩽

P

 ∑
i:⌊ i−1

m ⌋+1=a

Xi,π ⩾
∑

i:⌊ i−1
m ⌋+1=b

Xi,π

.

Next, we rewrite
∑

i:⌊ i−1
m ⌋+1=a

Xi,π ⩾
∑

i:⌊ i−1
m ⌋+1=b

Xi,π as

 ∑
i:⌊ i−1

m ⌋+1=a

Xi,π −
∑

i:⌊ i−1
m ⌋+1=b

Xi,π

−E
 ∑

i:⌊ i−1
m ⌋+1=a

Xi,π −
∑

i:⌊ i−1
m ⌋+1=b

Xi,π

 ⩾ ∆a since
∑

i:⌊ i−1
m ⌋+1=a

Xi,π =

∑
i:⌊ i−1

m ⌋+1=a

Xa and similarly for b, and the expectation...

...is a sum of i.d.d variables, which are independent because the Ai are (indeed P (Ai = ai ∩ Aj = aj) =
χai=supp(πhi

),aj=supp(πhj
) = χai=supp(πhi

)χaj=supp(πhj
) = P (Ai = ai)P (Aj = aj)), we may intro...

COMPLETE, FIX, BURN: the Bernoulli case might be doable with Hoeffding’s inequality...

COMPLETE: exercise: subgaussian version and chernoff bounds from the bandit book.

352



32.3 Solutions
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33 Data analysis

33.1 Regression

Regression trees:
We collected n data in the form of real vectors xi of d data parameters, as well as a real quantity yi
associated to these parameters, that we want to predict, given any d data parameter vector x. Multiple
approaches are possible. For example, for a given x, we could return an avareage of the yi, weighted
inversely propertional to the distance of xi to x. Such approaches are rather computationally demading,
especially when the size of the data is large. An alternative approach is to cluster the data first, hoping
that we have a computationally easy way of attributing a given input x to a cluster, and estimating y by
an average over that cluster. Here, computing the clusters may be computationally demanding, but once
it’s performed, we hope that estimation is easy.

We collected n data in the form of real vectors xi of d data parameters, as well as a real quantity yi
associated to these parameters, that we want to predict, given any d data parameter vector x. Multiple
approaches are possible. For example, for a given x, we could return an avareage of the yi, weighted
inversely propertional to the distance of xi to x. Such approaches are rather computationally demading,
especially when the size of the data is large. An alternative approach is to cluster the data first, hoping
that we have a computationally easy way of attributing a given input x to a cluster, and estimating y by
an average over that cluster. Here, computing the clusters may be computationally demanding, but once
it’s performed, we hope that estimation is easy.

An easy way to classify data points is through decision trees. In a binary affine decision tree, we
repreatedly ask quesions of form atqx ⩾ bq, where the questions depend on previous answers. For exam-
ple, the following tree makes three classes, which correspond to half-closed polyhedra (their colsures are
polyhedra) that partition the data space.

(x1, x2)

x1 ⩾ 0 x1 < 0

x1 − x2 ⩾ 0 x1 − x2 < 0

class A class B

class C

class C

class B

class A

The polyhedra are obtained by following the path from the root to the class, interecsecting by the corre-
sponding halfspace along each edge. For a tree providing c classes, a total of O(log2(c)) questions have
to be asked to classify the input x, as a binary tree of c leaves has depth at most log(c). Also, at most

O
(
log2(c)

2
)

questions of form atqx ⩾ bq have to be stored, since there are at most
log2(c)∑
l=1

l = O(
(
log2(c)

2
)

non-leaf nodes, which may correspond to different questions. So storing this tree and classifying with it if
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very computationally simple.

To estimate y given x with such a tree, we first use the tree to classify x, so that x is in half-closed-

polyhedron P . Then we estimate for example with y =
1

|{i : xi ∈ P}|
∑

i:xi∈P
yi. We can perform the last

part with more sophisticated methods, such as y =
∑

i:xi∈P

(
∥xi − x∥∑

i:xi∈P ∥xi − x∥

)
yi. The point is that if

we construct a tree such that |{i : xi ∈ P}| is relatively small for all classes P , then computing this last
estimate isn’t computationally hard anymore.

The question now is how to produce such a tree in a meaningful way. We will develop such a tree it-
eratively, adding a question at each iteration, attaching it to a leaf to produce two new leaves at each turn.
We will stop the algorithm, stopping such expansions of the tree, once each leaf have less then a specified
threshold as size.

To decide which question to ask, we would like that question to split the pre-class data points into
two groups, such that the total uniform variance of both groups is minimum. This can be expressed as a
quadratic MIP.
We let a and b be the question variables, P be the pre-class polyhedron, and gi be a binary indicator
variable telling the answer to the question. We can have constraints (1− gi) ⩾ xtia− b ⩾ −gi + ε for all i
with xi ∈ P for example, for an 1 > ε > 0 so that for a question a, b such that 1 ⩾ xtia − b ⩾ −1 + ε for

all i with xi ∈ P , we have gi =

{
1 : xtia ⩽ b

0 : xtia > b
.

The average values over the groups would be obtained by introducing variables mt and mb and con-
straints

∑
i:xi∈P

(1 − gi)(yi −mt) = 0 and
∑

i:xi∈P
gi(yi −mb) = 0, which makes for quadratic constraints We

would then optimize over these constraints, with quadratic objective
∑

i:xi∈P
gi(mb−yi)2+(1−gi)(mt−yi)2.

We can modify the problem to solve a problem with linear constraints. Indeed, at each step, we can
check the parity of N = |{i : xi ∈ P}| and require that the new classe have exactly N/2 data points, when

N is even, and some split when N is odd. Then, we can handle averages with
∑

i:xi∈P
(1− gi)yi =

2

N
mt for

example.
In fact, we can place ourselves in the framework of separable convex integer optimization, which we know

how to solve with Graver base methods. Note that with average of form
∑

i:xi∈P
(1− gi)yi =

2

N
mt, we can

get rid of the average variables by substitution, and get a quadratic form as objective, which is separably
convex. We can then seek integer a, b in some range [−m,m] to transform this into a full integer problem,
and replace (1− gi) ⩾ xtia− b ⩾ −gi + ε with M(1− gi) ⩾ xtia− b ⩾ −Mgi + 1, for some large M . Note
that these problems may now be unfeasible, even when a separating hyperplane exists, since it can’t be
represented with integer coordintes in [−m,m].

Another restriction is allowing questions of form etjqx ⩾ bq, which makes classification even faster, as
we check an inequality on a coordinate per question. This will classify the data space into rectangular
boxes. In that case, we can solve the branching problem by ranging over the dimensions j, where each
time we sort the jth coordinates of the xi ∈ P into values vi < ... < vp, and seek the minimum total
variance obtained by partitioning along etjx ⩾ vk for k ranging over [p].
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INCLUDE: random forests and Breiman’s algorithm
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33.2 Clustering

k-means-clustering:
In this version of clustering, we consider the data to be n points in euclidean space (n real criteria, dis-
tinguished by euclidean distance). We want to classify these points into at most k clusters. Each such
cluster would have a mean point. The goal is to find a clustering so that the total distance from the data
to their cluster mean is minimum.
To be more precise, we can start with a more general setting by defining indicator variables cij ∈ {0, 1}
that indicate if data point xi ∈ Rd is in cluster j ∈ [k] and centroid variables mj ∈ Rd to represent the

centroid of cluster j. We can then try to minimise
k∑

j=1

n∑
i=1

cij∥xi −mj∥, the total distance from the data

to their cluster centroid, subject to constraints
k∑

j=1

cij = 1 for all data i.

However, this is a difficult task as this is a non-linear MIP. A simpler approach is decouple the min-
imisation by minimizing over the cij and the mj separately. Indeed, if the mj are fixed, minimising over
the cij can be done as follows: since we have to chose exactly one of the cij to be set to 1 for a fixed data i,
choosing a cluster from argminj(∥xi−mj∥) beats all other assignments. Next, when the cij are fixed, we

can try to minimise the objective for themj . At this stage, we change the objective to
k∑

j=1

n∑
i=1

cij∥xi−mj∥2,

as it allows us to use differential optimisation. Note that argminj(∥xi −mj∥) = argminj
(
∥xi −mj∥2

)
due to monotony of the square, so the previous step is the same.
k∑

j=1

n∑
i=1

cij∥xi −mj∥2 is convex and has a unique minimum atteined in (solving the first order condition

k∑
j=1

n∑
i=1

2cij(xi,q −mj,q) = 0 for all dimensions q) mj =

∑k
j=1

∑n
i=1 cijxi,q∑n

i=1 cij
(when the size of the cluster is

n∑
i=1

cij > 0, otherwise we discard the cluster), the mean of the cluster.

The problem is that if we took random initial values for cij and minimised over mj for them, then
minimised over cij for this mj solution, we might have a better possibility for the mj at this stage, in the
sense that it would contribute to a lower objective. The same holds the other way around.
We can repeat the two steps of minimising over the cij and then the mj separately. At each step, the
objective value is lowered. Since the objective values are positive, the monotonely decreasing sequence of
objective values must converge. In fact, it does so in a finite number of steps. This is because there are at
most 2nk options for the cij and if one such configuration appears twice in the sequence v1 ⩾ v2 ⩾ ... ⩾ vt,
wlog. at 1 and t, where vt is the objective value after t iterations of minimising over the cij and then the
mj (which it will because there are finitely many configurations for the cij), then the mj of iteration 1 and
t must also be the same, since they depend only on the cij : we get v1 = vk and the sequence is constant
from there on.

Unfortunately, the decoupling of the optimization problem leads this algorithm to converge to certain "lo-

cal" optimum, which might not be a global one. Consider as a counterexample the data points x1 =
(
0

1

)
and x2 =

(
0

−1

)
which we which to classify into 2 clusters. The optimum is attained by setting each point

in one cluster and letting the centroid be that point (to get objective value 0). If we start with poorly
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chosen centroids m1 =

(
1

0

)
and m2 =

(
2

0

)
, then the first iteration places both points in the same cluster

and sets m1 =

(
0

0

)
, and this is already the limit configuration. The same would have happened if we

initially put both points in the same cluster and started by optimising the mj .
INCLUDE: PERFORMANCE GUARANTEE ??

k-spacing-clustering:
In this version of clustering, we only need to be able to compare pairs of data points {i, j} with a real
weight wij representing the notion of distance. We can then represent the situation by a complete graph
with vertex set the data set and edge weights wij . We want to partition the vertices/data into k clusters
exactly, so that the closest vertices of different clusters are far apart. Formally, this means that we seek
partition sets Cr that maximise min

{r,s}∈([k]2 ),i∈Cr,j∈Cs

(wij). The optimal objective value will be a lower bound

on the "distance" between any pair of data in different clusters.

I first idea would be to avoid low wight edges to appeat in the objective by placing the endpoints in
the same cluster. So an algorithm would be to sort the edges and successively go over them in increasing
order, putting the vertices in the same cluster when the edge they are endpoints of appears, until we have
k clusters. This sounds a lot like Kruskals MST algorithm (greedy MST): in that context, the clusters
correspond to connected components and we perform Kruskal until we reach k components, starting from
|V | ones.
Can we use the connection to MSTs to prove a quality result for this algorithm ?
We denote by C∗

i the clusters of the greedy algorithm we developed, and consider an arbitrary different
partition Ci. Difference means that one of the C∗

i will intersect two Cr and Cs, for otherwise all C∗
i would

have to be contained in only one of the Ci, and since both are partitions, this implies Ci = C∗
i . So we have

a ∈ C∗
i ∩Cr and b ∈ C∗

i ∩Cs. We can then consider an edge e of the the path of MST connecting a to b in
C∗
i , that has one endpoint in Cr and the other in Cs. The weight of e will be considered in the objective

value of the Ci, as its a cluster-crossing edge, so that it’s an upper bound on that objective value.
The objective value of C∗

i will be w∗
ij where {i, j} is the edge of the MST added to achieve k − 1 com-

ponents, because Kruskal selects the lowest weight edge between connected components at each step. In
particular, w∗

ij is greater then the weights of the edges of the MST in the C∗
i . This includes the edge e,

so that w∗
ij is greater then the objective value of the Ci. So this algorithm actually computes an optimal

clustering.
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33.3 Principle component analysis

Principal component analysis (PCA):
When we’re analysing complicated data, a concern is reducing the dimension of the data without affecting
its structure too much. For example, we can ask for an projection to a vectorial line spanned with unit
normal vector u with special properties. If we denote the data points by xi ∈ Rd, their projection on the
line to u is

(
utxi

)
u. One criterion for a good such projection would be that the total change between data

points is minimum, in the sense that we seek unit vector u such that
∑
i∈S

∥∥xi − (utxi)u∥∥2 is minimum,

where we used squared distances as they allow for easier computation. Another criterion would be that
a notion of "dispersion" is maximised, so that the reduction in dimension doesn’t affect discernability

between data too much. One such notion of dispersion is
∑
i∈S

(
utxi −

(
1

|S|
∑
i∈S

utxi

))2

, which measures

the variance of the projection.

It turns out that for centered data, that is after translation yi = xi −
1

|S|
∑
i∈S

utxi such that
1

|S|
∑
i∈S

yi = 0

and then
1

|S|
∑
i∈S

utyi = 0 (linearity), these two notions are equivalent!

Indeed,
∑
i∈S

∥∥yi − (utyi)u∥∥2 =
∑
i∈S

(
yi −

(
utyi

)
u
)t (

yi −
(
utyi

)
u
)
=
∑
i∈S

(
ytiyi − 2

(
utyi

)2
+
(
utyi

)2
utu
)

and since u is a unit vector and we can ignore constants in the objective, minimising the previous objec-
tive is the same as minimising

∑
i∈S
−
(
utyi

)2. This in turn is the same as maximising
∑
i∈S

(
utyi

)2 which is

∑
i∈S

(
utyi −

(
1

|S|
∑
i∈S

utyi

))2

for centered data.

If we devellop
∑
i∈S

(
utyi

)2
=
∑
i∈S

∑
a,b∈[d]

uayiayibub, we see that it coincides with
∑
i∈S

utyiy
t
iu = ut

(∑
i∈S

yiy
t
i

)
u.

So we’re maximising the quadratic form utY u where Y =
∑
i∈S

yiy
t
i is symmetric positive semidefinite over

the unit sphere. With a a spectral decomposition of Y , one can see that the maximum is the largest
eigenvalue.

COMPARE AND MERGE THESE TWO SECTIONS.

PCA through projection:
We consider n data given in the form of p-dimensional vectors xk. The problem is that of compressing
the data, so that it requires less then np entries to be stored, in a way that preserves the structure of the
data. A first idea is to project the data on an affine subspace of dimension d where d is much smaller then
p. The projection of xk would have form µ + V yk, where V = (v1, ..., vn) ∈ Rp×d is a orthonormal base,
µ ∈ Rp is a translation and yk ∈ Rd is the vector of scalars in the base V . Here, we’d store pd + p + nd

entries, which is much lower then np for d ⩽
(n− 1)p

n+ p
. The goal is then to find suitable V , µ and yk.

We’ll look for the V , µ and yk that minimise the squared norm error
n∑

k=1

∥xk − (µ + V yk)∥2, which

can be thought of as seeking the subspace that’s closest to the points xk. We don’t know if this function
is convex, so it’s not obvious how to optimize it.
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Indeed, note that the constraint on V isn’t convex: the "midpoint" of I and −I is not an orthonor-
mal base, in fact it isn’t even a base. If we relax the condition on V to be a base, then the problem still
isn’t convex. Indeed, consider the case where n = 3, p = 2 and d = 1, so that we have 3 data points in
the plane (−1, 0), (1, 0) and (0, 1), that we hope to project on a line, so that the sum of square distances
of the point to the line is minimized.

We consider the lines given by (0, 1) + R(−1, 1) and (0, 1) + R(1, 1), which both contain the data point

(0, 1). For both, the objective value is
(√

2
)2

= 2, where in both cases yk = 0 for all data points except
for the ones not projecting to (0, 1), where yk = −1. If we take the convex combination of these variables

with coefficient
1

2
, we get line (0, 1) + R(0, 1). The convex combination of the yk yield y(0,1) = 0, and

y(±1,0) = −
1

2
. This corresponds to the distances shown in red in the figure below:

(0, 1)

(1, 0)(−1, 0)

They are bigger then those to the projection of the corresponding points on (0, 1) + R(0, 1) (shown in
dotted lines), which are both 1. So the objective value is greater at the convex combination, contradicting
convexity.

Even when we consider the problem where the yk are paraemerized by µ and V to yield orthogonal

projections of points, convexity fails. To see this, you can take a convex combination other then
1

2
, say

for example
(
1

4
,
3

4

)
, and the convex combination lines isn’t the median/bisector of (−1, 0) and (1, 0), so

that the distance don’t sum up to two. A proof by picture, where we relate distances with circles:
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(0, 1)

(1, 0)(−1, 0)

To see that the sum of squares decreases as well, recall that a2+ b2 ⩽ (a+ b)2 for positive values. So when
a+ b decreases from 2 = 12 + 12, then so does a2 + b2. Thus, the objective value attains value 2 only at

convex combinations (1, 0), (0, 1) and
(
1

2
,
1

2

)
, but achieves lower values "in between" these combinations.

This contradicts convexity, as the combination
(
1

2
,
1

2

)
forms a local maximum.

Faced with a non-convex problem, We will therefore constrain the problem to a case that we understand
better.
First, we note that we can write xk = µ + V yk + wk, where wk is the orthogonal to the vector space
spanned by V , and is obtained from decomposing xk − µ in an orthogonal base containing V . We then
have the identity V txk = V tt + yk + 0, as V twk = 0 and V tV = I. So yk = V V t(xk − t), and we’re

optimizing
n∑

k=1

∥∥xk − (µ+ V V t(xk − µ)
)∥∥2. For zk = xk − µ fixed, minimising

n∑
k=1

∥∥zk − V V tzk
∥∥2 can be

done efficiently. This requires fixing µ. A good choice for it will be to let it be the mean µ =
1

n

n∑
k=1

xk, so

that
n∑

k=1

zk = 0, which will simplify things later on.

361



33.4 Classification

Linear classification:
We’re given data in form of points of Rd (d real measurements), each of which belongs to a class i ∈ [k].
We seek a partition of Rd into k subsets Ci, each containing all points of a class precisely, so that we’ll
classify new points by assigning them class i if they belong to Ci.
The problem of telling in which Ci a given point x ∈ Rd is should be accomplished with an efficient
algorithm.

We’ll classify using LPs. We start with the case of two classes: we’re give n1 points pi in class 1 and
n2 points qj in class 2. The simplest bipartition we can think of is when the points are on different sides
of a hyperplane given by equation atx = b. We can then determine in which class a new point x is by
checking if atx > b or atx < b. Of course, it may happen that there is no hyperplane strictly separating
the classes: then our particular form of classification isn’t adapted to the data.
We can find such a hyperplane or tell that none exist by solving the LP:

max(ε) :


atpi ⩾ b+ ε,∀i ∈ [n1]

atqj ⩽ b− ε, ∀j ∈ [n2]

ε ⩾ 0

If it has a solution with ε > 0, then the classification is possible, otherwise it isn’t. The variables are
a ∈ Rd, b ∈ R and ε ∈ R+, the first two providing the hyperplane.
.........

Perceptron algorithm:
A slightly restricted version of linear classification can be solved without using a linear programming al-
gorithm. As in the previous section, we’re given n1 + n2 points pi and qj in Rd, and our goal is to find a
vector w such that wtpi ⩾ 1 and wtqj ⩽ −1 to classify points.
Before describing the perceptron algorithm for finding such a w if it exists, we remark that finding such a
w is equivalent to finding a v such that vtpi > 0 and vtqj < 0. Indeed, if we have w, then v := w does the

job, and conversely, if we have v, then w :=
1

minij (|vtpi|, |vtqj |)
v works, as vtpi ⩾ min

ij

(
|vtpi|, |vtqj |

)
and

vtqj ⩽ −min
ij

(
|vtpi|, |vtqj |

)
.

The perceptron algorithm starts with w = 0 and corrects it iteratively by pushing w along the direc-
tion of the miss-classified point to adjust the dot product. More precisely, we repeat the adjustment until
we have wtpi > 0 and wtqj < 0 for all points. In the adjustment phase, we consider the miss-classified
point and adjust as follows: if wtpi ⩽ 0, then w := w + pi and if wtqj ⩾ 0, then w := w − qj .
If the algorithm terminates, w will by definition have the require property wtpi > 0 and wtqj < 0, so
that by our previous discussion, we can normalise it to find the desired output. But does the algorithm
terminate if an classifying vector W such that W tpi ⩾ 1 and W tqj ⩽ −1 exists ?

In an attempt to study the convergence to W , we’ll analyse the behavior of wtW and ∥w∥, as these
terms appear in ∥w − W∥2. Note that at a misclassification at sample s, the new dot product is
(w ± s)tW = wtW ± stW > wtW + 1, since W classifies s correctly. So after M iterations, we’ll
have wtW > M (as we started with w = 0). We next look at ∥w ± s∥2 = ∥w∥2 ± 2stw + ∥s∥2, so that
∥w±s∥2 ⩽ ∥w∥2+max

ij

(
∥pi∥2, ∥qj∥2

)
, since w misclassified s so that ±2stw ⩽ 0. Thus, after M iterations

∥w∥2 ⩽M.max
ij

(
∥pi∥2, ∥qj∥2

)
.

Using Cauchy-Schwartz, M2 ⩽
(
wtW

)2
⩽ ∥w∥2∥W∥2 ⩽ ∥W∥2M.max

ij

(
∥pi∥2, ∥qj∥2

)
, we obtain the bound
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on the iterations M ⩽ ∥W∥
√

max
ij

(∥pi∥2, ∥qj∥2), proving that the algorithm terminates.

If a classifier W exists, the algorithm outputs a correct classifier which is a sum and difference of the
points, scaled by the inverse of the smallest absolute dot product.

It will have form w′ :=
1

minij

(
|
(∑

i∈I pi −
∑

j∈J qj

)t
pi|, |

(∑
i∈I pi −

∑
j∈J qj

)t
qj |
)
∑

i∈I
pi −

∑
j∈J

qj

.

We can then replaceW by w′ in the analysis of termination of our algorithm to getM ⩽ ∥w′∥
√

max
ij

(∥pi∥2, ∥qj∥2).

Theoretically, we can bound ∥w′∥ by data on the points, so that we could conclude that no classifier W
existed in the first place if the algorithm requires more iterations then this bound. The problem is that

the finding this explicit bound requires minimizing min
ij

|
∑

i∈I
pi −

∑
j∈J

qj

t

pi|, |

∑
i∈I

pi −
∑
j∈J

qj

t

qj |


over all I and J such that this minimum is non-zero, which is exponential in the number of points if done
with brute force.
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33.5 Graph partitioning
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33.6 Data assimilation

Part 2 and 3 of "Inverse Problems and Data Assimilation" in folder "InversePorblems"
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33.7 Solutions
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34 Graphical models

34.1 Definitions, examples, properties

Graphical models deal with a finite family of random variables (Xi)i∈[w] taking values from finite sets
Wi. Usually, some in-/dependence realtions, as well as some conditional distributions, are known and the
task is to find marginal or other conditional distribution, etc. We start by giving a few examples of such
graphical models, right after a short example of a type of problem we can model with these tools.

Assume we have a patient who displays observable symptoms of a disease that we’d like to determine.
For disease d, we have binary random variable Xd indicating if the patient has disease d, for which we
know the distribution, which we’ll estimate statistically by letting the probability of the patient having
the disease be the ratio of patients that had the disease to the total number of patients. Next, biology
will provide us with random variables Xp index by phenomena p that may happen in the body, and con-
ditional distributions p(Xp|XC(p)), where C(p) is a set of phenomena we know to collectively impact p.
These conditional distributions can be determined from experiments in labs. For example, if Xp is the
discretized concentration of a metabolite in the blood-stream, and Xq is a binary variable indicating the
presence of an enzyme in some cells (yes, this example is completely made up), then we can let C(p) = {q}
and p(Xp = c|XC(p) = (i)) be the ratio of times we observed concentration c in the blood-stream when
the enzyme presence was indicated by i.
Some of these phenomena will be observed when the patient goes to the doctor. For example, we can
determine the value of Xp if p is the presence of a certain metabolite in urine. The question is then to
determine which disease is the most likely for the patient to have, conditioned of the values observed for
the symptoms.
This is a graphical model in the sense that we can "represent" it with a graph: if we create vertices for
all diseases d and all phenomena p, we can add an edge (p, q) whenever we have p(Xp|XC(p)) available, with
q ∈ C(p). In that case, we have C(p) = δ−(p). This leads us to the first type of graphical model we’ll study:

Bayesian networks:

Bayesian network:

A directed acyclic graphG and a family of conditional distributions p(Xv|Xδ−(v)) (with p(Xv|X∅) = p(Xv))
for v ∈ V is called a Bayesian network if the joint probability distribution p(X = x) can be written as
p(X = x) =

∏
v∈V

p(Xv = xv|Xδ−(v) = xδ−(v)).

We have the following characterization of Bayesian networks, which can also be taken as definition. It
gives a better understanding of what a Bayesian network is: it’s a graphical model in which we assume
(conditional) independence among variables we can’t relate in out network.

Characterization:

We’re dealing with a Bayesian network ⇔for all v ∈ V and S ⊆ V such that there is no directed
path from v to any of the elements of S, we have Xv and XS conditionally independent knowing XP ,
where P is the set of vertices without parents, in the sense that P =

{
v ∈ V : δ−(v) = ∅

}
.

Proof: TO COMPLETE, also fix proposition ?? If S is an ancestor of v, no conditional independence ?

367



For a sink s of the graphG of a Bayesian network, G\s is also a bayseian network. (Generalize to sets S with
only incoming edges): p(XV \s) =

∑
w∈Ws

p(Xs = w,XV \s) =
∑

w∈Ws

p(Xs = w|Xδ−(s))
∏

v∈V \s

p(Xv|Xδ−(v)) =

∏
v∈V \s

p(Xv|Xδ−(v))

( ∑
w∈Ws

p(Xs = w|Xδ−(s))

)
=
∏

v∈V \s

p(Xv|Xδ−(v))

Boltzmann machines:
These are sometimes called pairwise graphical models.

Boltzmann machines:

The variables Xi form a Boltzmann machine, if there is a graph G and a set of functions ϕv :Wv → R+

for v ∈ V and ψ{u,v} : Wv ×Wu → R+ for {u, v} ∈ E that are real-valued, positive, and symmetric in

the sense that ψ{u,v}(a, b) = ψ{u,v}(b, a), so that p(X = x) =
1

Z

∏
v∈V

ϕv(xv)
∏

{u,v}∈E

ψ{u,v}(xv, xu), where

Z =
∑

x∈WV

∏
v∈V

ϕv(xv)
∏

{u,v}∈E

ψ{u,v}(xv, xu) is called the partition function.

INCLUDE: Ising and Hopfield

Factor graphs:
Factor graphs aren’t a graphical models in the way we defined them, but they can still be represented by
graphs. The goal is to determine the joint values of random variables Xi for i ∈ [w], that we assume to
depend on a set of factors F . The dependencies can be represented as a bipartite graph on vertices [w]∪F ,
where edge {i, f} expresses dependence of variable i on factor f . The dependence is the following one:

Factor graphs:

We’re dealing with a factor graph(-ical model) when there is a bipartite graph ([w] ∪ F,E) and

there are positive function ϕf :

 ∏
i∈δ(f)

Wi

→ R+ such that p(X = x) =
1

Z

∏
f∈F

ϕf (xδ(f)) where again we

have so-called partition function Z =
∑
x∈W

∏
f∈F

ϕf (xδ(f)).

An example of such a model is a simple version of group testing. We let Xi indicate a cause i and F be
a set of features f that can be in one of two possible states (observed or not) and depend on the causes.
Then feature f is observed if one of the causes i it depends on, in the sense i ∈ δ(f), is true, an f is not
observed if all causes i it depends on are false. We also assume to have knowledge of the probabilities pi
that Xi is true (Xi = 1), and that the Xi are independent.
If we observe yF ∈ {0, 1}F for the features, we would like to determine the most likely state of the causes
X = x producing these observations. To compute p(X = x), before maximising it, we note that x can be
a state producing y precisely if one of the xi = 1 for i ∈ δ(f), if yf = 1, and all xi = 0 for i ∈ δ(f), if

yf = 0. We can inidcate that x can cause y with
∏

f :yf=0

 ∏
i∈δ(f)

(1− xi)

 ∏
f :yf=1

1−
∏

i∈δ(f)

(1− xi)

. The
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probability of x is
∏
i∈[w]

pxi
i (1− pi)1−xi . By letting Z be the probability of y being observed, we can write

it as Z =
∑

x∈{0,1}w

∏
f :yf=0

 ∏
i∈δ(f)

(1− xi)

 ∏
f :yf=1

1−
∏

i∈δ(f)

(1− xi)

 ∏
i∈[w]

pxi
i (1− pi)1−xi . Then the proba-

bility of observing x knowing y is
1

Z

∏
f :yf=0

 ∏
i∈δ(f)

(1− xi)

 ∏
f :yf=1

1−
∏

i∈δ(f)

(1− xi)

 ∏
i∈[w]

pxi
i (1−pi)1−xi .

This is actually a factor graph model. We first assign variables to features in some arbitrary way,
so that each variable is assigned to exactly one feature among its neighbours. Formally, we parti-
tion [w] into disjoint set a(f) over f ∈ F , so that a(f) ⊆ δ(f). We can then define ϕf (xδ(f)) =∏
i∈a(f)

pxi
i (1−pi)1−xi

 ∏
i∈δ(f)

(1− xi)

 for yf = 0 and ϕf (xδ(f)) =
∏

i∈a(f)

pxi
i (1−pi)1−xi

1−
∏

i∈δ(f)

(1− xi)


for yf = 1. We’ll then have

1

Z

∏
f :yf=0

 ∏
i∈δ(f)

(1− xi)

 ∏
f :yf=1

1−
∏

i∈δ(f)

(1− xi)

 ∏
i∈[w]

pxi
i (1 − pi)1−xi =

1

Z

∏
f∈F

ϕf (xδ(f)), so that we do indeed deal with a factor graph model.

Markov random fields:

Markov random fields:

The variables Xi for i ∈ V form a Markov random field if there is a graph G with collection C

of cliques C ⊆ V as well as positive functions ϕC :

(∏
i∈C

Wi

)
→ R+ such that p(X = x) =

1

Z

∏
C∈C

ϕC(xC),

where again we have so-called partition function Z =
∑
x∈W

∏
C∈C

ϕC(xC).

Again, we have a more transparent definition of Markov random fields.

Markov random field characterization (Hamersley-Clifford):

COMPLETE

INCLUDE: characterisation from MCMC notes

Partition function positivity:
A question of rigour is that the partition functions used in the previous definitions are non-zero. It turns
out that, given the functions ϕ and ψ of the definitions, checking if Z > 0 efficiently is an actual problem
on its own.

Partition function complexity:

Checking if Z > 0 by computing an finding an x such that p(X = x) > 0 for a factor graph or a
Boltzmann machine is NP-hard.
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Proof: We’ll reduce SAT to these problems. We consider n random variables, for n variables in the SAT
instance, and let all state-spaces be Wi = {0, 1}, for false and true respectively. For factor graphs, we
let factors be the clauses, so that Z > 0 ⇔ ∃x,

∏
f∈F

ϕf (xδ(f)) > 0 ⇔ ∃x, ∀f, ϕf (xδ(f)) > 0. If we let δ(f)

be the variables of clause f , and let ϕf (xδ(f)) =
∏

i∈δ(f)

xi where xi = xi if variable i isn’t negated in the

clause and xi = 1−xi if it is, then ϕf (xδ(f)) = 1 > 0 is equivalent to the clause f being satisfied, the only
other value taken by ϕf (xδ(f)) being 0. So finding such that p(X = x) > 0 amounts to finding a truth
assignment satisfying the SAT instance for factor graphs.
This same construction can be used to show the result for Boltzmann machines, where the ϕ = 1, the
state space of the factor variables is WF = {1}, and ψ{i,f} = xixf = xi (which is symmetric).
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34.2 Inference

Inference of Boltzmann machines on trees:
The problem of inference is, given a set of observations yO of variable values, to find the most likely
values for the other variables of V \O, knowing these values. Since p(XV \O = xV \O|XO = yO) and
p(XV \O = xV \O, XO = yO) are proportional for fixed y, our goal is to find the values xV \O that maximise
p(XV \O = xV \O, XO = yO) (efficiently). This problem is sometimes called max marginal problem.

Inference on Bolzmann machines:

The max marginal problem is NP-hard, in full generality.

Proof:
We can reduce max-cut instances to certain max marginal problems. For a max-cut instance, we use the
same graph, and set ϕ = 1 and ψ{u,v}(xv, xu) = e1−xuxv with state spaces Wv = {−1, 1}. We’ll deal with

a max marginal instance where O = ∅, so that we seek maximising
1

Z

∏
v∈V

ϕv(xv)
∏

{u,v}∈E

ψ{u,v}(xv, xu),

which is equivalent to maximising (logarithm, constants, positive scaling)
1

2

∑
{u,v}∈E

(1− xuxv), which is a

max-cut problem if we relate bipartition sets to variables taking values in {−1, 1}.

We can still find efficient algorithms for specifications of the problem. We’ll consider the case of trees.
We’ll solve this problem with dynamic programming. Boltzmann machines are particularly nice since the
distribution is easy to break up.

First, note that we can ignore the scaling
1

Z
in the optimization problem, which will ease notation.

If we consider some vertex s, then we can write
∏
v∈V

ϕv(xv)
∏

{u,v}∈E

ψ{u,v}(xv, xu) as

ϕs(xs)
∏

{s,v}∈δ(s)

ψ{s,v}(xv, xs)
∏

v∈V \s

ϕv(xv)
∏

{u,v}∈E\δ(s)

ψ{u,v}(xv, xu). To get a recursion, since we can’t fully

separate the vertex from its neighbours in the function, we could consider OPT (zN(s)), the optimal ob-
jective value of the the separated

∏
v∈V \s

ϕv(xv)
∏

{u,v}∈E\δ(s)

ψ{u,v}(xv, xu) over variables xV \s, under the

constraint xN(s) = zN(s).

This approach becomes problematic at the next recursive iteration already, since it isn’t clear how to
split on a further vertex or handle the constraints. It does however work well on trees. For a tree
T , deleting s produces |δ(s)| trees Tj , so that when we number them from 1 to |δ(s)|, we can split∏
v∈V

ϕv(xv)
∏

{u,v}∈E

ψ{u,v}(xv, xu) into ϕs(xs)
∏

{s,v}∈δ(s)

ψ{s,v}(xv, xs)
∏

j∈[|δ(s)|]

∏
v∈Vj

ϕv(xv)
∏

{u,v}∈Ej

ψ{u,v}(xv, xu)

.

If we consider the trees to be rooted, then we can introduce OPT (T, zr), the optimal objective value for
tree T over variables xV \r, with only xr = zr as constraint. Then, if x∗ maximises the probability for the
max marginal problem, then first p (X = x∗) ⩽ OPT (T, x∗s) ⩽ max

xs

(OPT (T, xs)). By optimality, this in-

equality is tight. Next, for any s we have OPT (T, xs) ⩽ ϕs(xs)
∏

{s,v}∈δ(s)

ψ{s,v}(xv, xs)
∏

j∈N(s)

OPT (Tj , xj),
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so OPT (T, xs) ⩽ max
xN(s)

ϕs(xs) ∏
{s,v}∈δ(s)

ψ{s,v}(xv, xs)
∏

j∈N(s)

OPT (Tj , xj)

 and again, the inequality is

tight by optimality.

We thus have the dynamic programming recursion

OPT (T, xs) = max
xN(s)

ϕs(xs) ∏
{s,v}∈δ(s)

ψ{s,v}(xv, xs)
∏

j∈N(s)

OPT (Tj , xj)


, since this worked for any tree and root. We therefore solve the problem for smaller and smaller trees.
It can be improved to OPT (T, xs) = ϕs(xs)

∏
j∈N(s)

max
xj

(ψ{s,j}(xj , xs)OPT (Tj , xj)), since the trees Tj are

disjoint. This truns out to be crutial to efficiency of the procedure.

A important fact is that the roots appear only in one of the OPT (T, xs) over all such values to com-
pute, as they aren’t contained in the trees of the deeper recursion iterations, since we split on them. So
at most |V | value OPT (T, xs) have to be computed. Computing one such value requires finding at most
∆(G) maxima, each in at most max

i∈V
(|Wi|) time. So a basic bound for the runtime of our algorithm is

O(|V |∆(G)max
i∈V

(|Wi|)) or O
(
|V |2max

i∈V
(|Wi|)

)
.

The base case of the recursion is when the trees are single vertices. In that case OPT (T, xs) = max
xs

ϕs(xs).
Finally, we deal the constraint on observed variables. We can handle this by solving an instance of the
problem for which WO =

∏
v∈O
{yv}.

To solve the problem in true dynamic programming fashion, note that for an initial s, we can orient T so
that the the edge point from s to the vertices. The vertices appear as roots in the recursion in the order
induced by this orientation. We would therefore start computing OPT (({l}, ∅), xl) for the leaves of the tree
T , and move on with decreasing distance to s. Then, we’d conclude with p (X = x∗) = max

xs

(OPT (T, xs)).
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34.3 Solutions
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35 Machine learning

35.1 Neural networks basics

Neural networks originated from an attempt to model actual neural activity of our brains. As an input,
the neural network receives a vector x ∈ Rdin of signals, like our brain receives signals from our eyes, ears,
etc. It then outputs a response F (x) ∈ Rdout of signals, like our brain tells our muscles to contract. The
neural network does this ... with a network of neurons. We can think of the neurons as the vertices of
a digraph, where a neuron v will receive signals form the neurons of δ−(v), process them, and transmit
them to the neurons of δ+(v). At the start, there is a set of din neurons i are the input neurons, which
will transmit signal xi. Then, if a neuron v receives signals au ∈ R from the u ∈ δ−(v), it will process this
signal. Some neighbours may be more relevant then others, so the we introduce weights w(u,v) that model
the importance of neighbour u to v. For biological observation, it was observed that neurons transmit
(electrical) signals only if the input signals reach a certain intensity, and with a certain intensity: the neu-

ron "fires". We will let our neurons output signal av = f

bv + ∑
u∈δ−(v)

w(u,v)au

 to its neighbours, where

f is an activation function, such as f(x) =

{
1 : x ⩾ 0

0 : x < 0
, if we try to imitate biological neurons, and

bv ∈ R is the bias that will determine the critical point at which the neuron fires. These signal propagate
from the input neurons, along the topological order of the digraph that we assume to be acyclic, until
we reach a set of dout output neurons who’s signals are meant for the rest of the body, in our biological
analogy, and form F (x).
Though neural network aren’t yet an accurate model of our brain, they can be used for classification, a
task at which they are surprisingly efficient. For example, the input x could be the pixels in RBG values
of pictures of animals, and the output neurons could represent the category of the input image, such as
dog, cat, hamster, in the sense that we classify the input image according to the highest output signal.
Once we’ve fixed an activation function f , we would like our choice of weights w and biases b to be set
so that classification is done properly. In the analogy to biological neurons, we can take an evolutionary
perspective, and argue that through natural selection, the neural networks in our brain are those that did
their job "best". This hints at the idea of setting the weights w and biases b so as to optimise a certain
objective.
If we have data available, which in our context will come in the form of N points (xi, yi), where xi is an
input signal and yi is the known target value we want the NN to predict for xi, then we can minimise a

penalty/cost function, such as the average squared distance C(w, b) =
1

N

N∑
i=1

∥yi−F (xi)∥22 over weights

and biases to get the desired result. In our example, we can let yi = ej if the picture given by xi is animal j.

We point out that many choices of activation and penalty functions exist. One can also use different
activation functions at different neurons, or different penalty functions for different data points. However,
choosing one such function makes analysis eaysier.
Here are some examples of activation functions:

• Indicator/step-function or McCulloch-Pitts function: f(x) =

{
1 : x ⩾ 0

0 : x < 0
, or sometimes it takes

values in {−1, 1}, depending on scources.

• Linear function: f(x) = kx for some k > 0.
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• Sigmoid: f(x) =
1

1 + e−x
, which one gets from solving the logistic equation

{
f ′ = f(1− f)
f(0) = 1

2

, and

which has a shape that smoothly approximates the indicator f(x) =

{
1 : x ⩾ 0

0 : x < 0
.

• Rectified linear unit (relu): f(x) =

{
x : x ⩾ 0

0 : x < 0
, which is continuous but not smooth at 0.

Some examples of cost functions are:

• Least square/L2-error: C(w, b) =
N∑
i=1

∥yi − F (xi)∥22 or a positively scaled version of it.

• L∞-error: C(w, b) = max
i∈[N ]

∥yi − F (xi)∥.

Learning:
Minimizing C(w, b) is in general a difficult problem. Note that many efforts to make this a convex minimi-
sation problem by making assumptions on f fail. Convex sums and composition with increasing convex
function preserves convexity, but products, which arise in the form w(u,v)au, don’t. We will therefore
most-likely be dealing with a non-convex problem.
We can still use gradient descent optimization algorithms for this problem, though we have no guarantee
of convergence to a global minimum. If we assume the activation function f differentiable (for example,
the sigmoid), then we’re faced with the problem of computing the gradient of F , which is used in many
optimization algorithms.
Note also that for large data used in the objective, we’re in the context that stochastic gradient descent
was developed for.

We represent our network in the form of layers l ∈ [L], where the din neurons of layer 1 are the in-
put neurons, and the dout neurons of layer L are the output neuron. We number the neurons on each
layer from 1 to nl, where nl is the number of neurons on that layer. We also assume that for v on layer l,
its out-neighbourhood δ+(v) is all of the layer l + 1. We can then index output signals by alj where l is
the layer, and j ∈ [nl] the neuron on it, where the sup-script isn’t a power. The same holds for biases blj
and for weights, we use matrix W l who’s entries wl

ij are the weights of neuron i on layer l + 1 attributed

to input-neuron j on layer l. In compact notation, we may then write al+1 = f
(
W lal + bl+1

)
(apply f

component-wise, where a and b are vectors with components being signals and biases).
We consider al as a function of W i for i ⩽ l − 1 and bj for j ⩽ l, but for the use of the chain rule it will
be convenient to consider it as a function of W l, al, bl+1 (think al+1(M,x, y) = f(Mx+ y)).
Note that with our indexing, we care only about layers ⩾ 2, so in a2 = f

(
W 1a1 + b2

)
, we set a1 = x, the

input data point.
We’ll have partial derivatives

(
∂Mija

l
i

)
(M,x, y) = f ′(Mi∗x+ yi)xj and for k ̸= i,

(
∂Mija

l
k

)
(M,x, y) = 0,(

∂xja
l
i

)
(M,x, y) = f ′(Mi∗x+ yi)Mij and

(
∂yia

l
i

)
(M,x, y) = f ′(Mi∗x+ yi) and for k ̸= i we have(

∂yia
l
k

)
(M,x, y) = 0.

Now, if we seek derivatives of al+1 = f
(
W lal + bl+1

)
in the coefficients of W l and bl+1, which don’t show

up in al, we have directly
(
∂W l

ij
ai

l+1
)
(W l, al, bl+1) = f ′(W i∗

lal + bl+1
i )alj = f ′(al+1

i )alj and(
∂bl+1

i
al+1

)
(W l, al, bl+1) = f ′(W i∗

lal + bl+1
i ) = f ′(al+1

i ) (and the zero cases).

For derivatives in W r for r ⩽ l − 1 and bs for s ⩽ l of al+1, we have to use the chain rule. Indeed, we
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have
(
∂W r

ij
ak

l+1
)
(W l, ..., bl+1, ...) = f ′(W k∗

lal + bl+1
k )

nl∑
q=1

W l
kq

(
∂W r

ij
alq

)
= f ′(al+1

i )

nl∑
q=1

W l
kq

(
∂W r

ij
alq

)
for

r ⩽ l − 1 and(
∂bsi a

l+1
)
(W l, al, bl+1) = f ′(W k∗

lal + bl+1
k )

nl∑
q=1

W l
kq

(
∂bsi a

l
q

)
= f ′(al+1

i )

nl∑
q=1

W l
kq

(
∂bsi a

l
q

)
for s ⩽ l.

We’ll now clarify how to use these relations to compute the partial derivatives. First, the values of al

can are determined by successive evaluation, as they depend only on the a of the previous layers, on what
is called a forward pass.

In the following tableau, the entry at row l column t will be the values of the partial derivatives of the
∂W t−1

ij
al and ∂btia

l. The values on the diagonal can be combuted directly, knowing only the value of al,
since they don’t make use the the chain rule. The black small arrows indicate the use of the product rule.
Indeed, the rule requires the knowledge of the derivative in the same variable on the preceding layer, as
well as the signal values a and parameter values.

WL−1,
bL

aL

WL−2,
bL−1

aL−1

∂WL−1

∂bL

∂WL−2

∂bL−1

x

W 0,
b1

∂WL−2

∂bL−1

Finally, we can compute the derivatives of C(W, b), assuming we chose a differentiable cost function such

as the least square one. By linearity and minimisation, we can look at
1

2

∥∥yi − aL∥∥22 for one data point i

only. We then have for any variable v, (∂vCi)(W, b) =

dout∑
j=1

(
∂va

L
j

) (
aLj − yi,j

)
.

Optimizing with SGD:
We are precisely in the context to apply stochastic gradient descent, if we make a few assumptions and

remarks. To get the similarity condition, which in this context states E

dout∑
j=1

(
∂va

L
j

) (
aLj − yi,j

)
(W, b)

 =
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|F |
∑
i∈F

dout∑
j=1

(
∂va

L
j

) (
aLj − yi,j

) (W, b), where the distribution is over data points i, we can simply use

uniform distribution.
COMPLETE: bound

(
∂va

L
j

) (
aLj − yi,j

)
and L-smoothness...

A (mixed) integer programming based neural network:

In this section, we’ll try to implement the neural network with a step-function fb(x) =

{
1 : x ⩾ b

0 : x < b
.

We’ll do this by rephrasing the learning optimisation problem as a non-linear MIP first, followed by a trick
that makes it a linear MIP.

We’ll denote an input vector by x, and those of the training data by xi, where i is the index. Due
to the binary nature of activation functions, we’ll also assume that the labels we’re supposed to predict
are vectors y with entries in {0, 1} (a binary string).

We then denote by ul,k the signal emitted by the kth neuron on the lth layer: we treat it as a variable of
the MIP, with constraint ul,k ∈ {0, 1}. By denoting with W l the matrix of weights who’s entry at (i, j) is
the weight associate to the signal to neuron i on the (l+ 1)th layer from neuron j on the lth layer, which
are variables of our MIP, the signal arriving at the neuron i on the (l+1)th layer is

(
W l
)
i∗
ul =

∑
j∈[dl]

wl
ijul,j .

To model the step-function, we use the following "big-M" trick by adding contraints{(
W l
)
i∗ ul ⩽Mul+1,i + bl+1,i(

W l
)
i∗ ul ⩾M(ul+1,i − 1) + bl+1,i

. We see that if
(
W l
)
i∗
ul > bl+1,i, then the first constraint implies

ul+1,i = 1 (for M > 0), and the second constraint is coherent in that case. Now if
(
W l
)
i∗
ul < bl+1,i, the

second constraint requires ul+1,i = 0, and the first constraint is coherent in that case. We now have to
find a suitable M that makes the inequalities coherent. To do this, we’ll actually constraint the weight
and biases to be in [−1, 1]. This way,

(
W l
)
i∗
ul =

∑
j∈[dl]

wl
ijul,j ∈ [−dl, dl], so that

(
W l
)
i∗
ul − bl+1,i ∈

[−(dl + 1), (dl + 1)] and choosing M = dl + 1 does the job.
Note that in the case that

(
W l
)
i∗
ul = bl+1,i, both values are possible for ul+1,i.

We set these constraints for all neurons. On the first/second layer, we’ll have

{(
W l
)
i∗ x ⩽Mu1,i + bl+1,i(

W l
)
i∗ x ⩾M(u1,i − 1) + bl+1,i

,

where we assume that the input data has entries in [−1, 1].
This is for one training data vector. For training data vector xi, we’ll index the variables step-function
modelling variables by uil,k . Weights and biases are the same for all data points. So for L layers of
size at most D and I training data, we have O(LD) biases, O

(
LD2

)
weights, and O(LDI) step-function

modelling variables.

To get a linear objective, we’ll use the norm ∥.∥1 as penalty, since it can be modeled with linear constraints.

We use variables zik and constraints

{
zik ⩾ uiL,k − yik
zik ⩾ yik − uiL,k

, and finally set linear objective
∑
i∈[I]

∑
k∈[dL]

zik, to be

minimized. This adds O(DI) variables and constraints.

This isn’t yet a linear MIP, as we have quadratic terms in the constraints involving
(
W l
)
i∗
ul =

∑
j∈[dl]

wl
ijul,j .
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We can linearise this with a bunch of tricks. First, we’ll use variable plij ∈ [−1, 1] to model the product
wl
ijul,j . Since ul,j ∈ {0, 1}, we’ll handle the case disjunction on the value of the product via constraints.

Indeed, consider


plij ⩽ ul,j

plij ⩾ −ul,j
plij ⩽ wl

ij − (ul,j − 1)

plij ⩾ wl
ij + (ul,j − 1)

: when ul,j = 0, the first two constraints imply plij = 0, so that

plij = wl
ijul,j in that case, and the last two constraints are coherent, and in the case that ul,j = 1, the

last two constraints imply plij = wl
ij , so that plij = wl

ijul,j in that case, and the first two constraints are
coherent.
This adds O

(
LD2

)
variables. We the replace

(
W l
)
i∗
ul =

∑
j∈[dl]

wl
ijul,j by

∑
j∈[dl]

plij in the previous con-

straints.

The size of this MIP can make it impossible to handle in practice. However, it’s usable for few, small
layers, and little data. This model was developed by Kurtz and Bah and they claim that this architecture
beats classical architectures in particular contexts/instances.
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35.2 Learnability

We’ll now try to answer the question of what neural networks can learn.

Learning Boolean funcitons:
We’ll first present a neural network that can simulate a Boolean function. Recall that a Boolean function
is a function from {True, False}n to {True, False}, where n is the number of Boolean variables that are
the input of the function. We’ll use convetions True ≡ 1 and False ≡ 0 and the fact that a Boolean can
be represented by a DNF to simplify things. A DNF on Boolean variables xi has form ∨c∈C(∧l∈Lcbl(xl))),
where C is the finite set of clauses, the Lc are finite and the bl are either the identity or the negation
bl(x) = ¬x. We note that in the DNF representation of a Boolean function on n variables, the Lc have
size at most n, but C may have size exponential in n.

To model a Boolean function as a neural network, we’ll use indicator activation functions f(x) =

{
1 : x > 0

0 : x ⩽ 0
.

To find the weights and biases, we note that we can express the connectors ∨, ∧ and ¬ by neurons. The
easyiest is ¬, which we can model by neuron f(1 − x), so with weight −1 and bias 1. Next, we’ll rep-

resent ∧l∈Lcxl by f

∑
l∈Lc

xl − |Lc|+ 1

, as
∑
l∈Lc

xl − |Lc| + 1 > 0 precisly when all xl = 1, assuming

they take value in {0, 1}. So here, weights are all 1 and bias is −|Lc| + 1. Finally, we’ll model ∨c∈Cyc

by f

(∑
c∈C

yc −
1

2

)
, as

∑
c∈C

yc −
1

2
> 0 precisely if at least one of the yc is 1, assuming they take value in

{0, 1}. So here, weights are all 1 and bias is
1

2
.

Now, we can start constructing our network. The input layer has n nodes, which we’ll input values
of {0, 1} to simulate the Boolean function. The first hidden/inner layer will handle negation: for all
clauses, we add a neuron for when a variable with negation appears. for the signal transmitted to be
f(1 − x), we set bias to 1, weight of the edge coming from the corresponding variable to −1, and all
other weights of incoming edges to 0. Technically, we can add neurons representing the identity when
the variable appears without negation, via f(x), but we can also just directly feed the variable appearing
without negation the the second hidden layer. In the second hidden layer, we’ll deal with ∧. For each

clause c, we add a neuron which will transmit signal f

∑
l∈Lc

xl − |Lc|+ 1

, with input edges from the

first hidden layer (and depending on our conventions, from the input layer). Finally, we add a third and

final layer to handle ∨, which is a single output neuron transmitting signal f

(∑
c∈C

yc −
1

2

)
, where yc is

the signal emitted by neuron c on the second layer. In total, our network uses at most (n+ 1)|C| hidden
neurons, which may be exponential in n, depending on the DNF representing the Boolean function, to
simulate it.

This is a example of what we mean by a neural network being able to learn a function, which here
was learning a Boolean function. We do not study the convergence to the weights an biases we’ve given.

ADD: from Venkatesh’s ML notes, learning finite automata, as exercise ? Also the rest of his section...

FIT IN:
We’ll show that the XOR-function can’t be obtained as a (2, 1) network. Indeed, no hyperplane can seper-
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ate (0, 0) and (1, 1) from (0, 1) and (1, 0). If there where, then both pairs of points would be in different

halfspaces, yet the midpoint of the pairs is the same
(
1

2
,
1

2

)
, which would have to be in both halfspaces,

by convexity.

Learning a class of continuous functions efficiently:
Learning continuous functions is more difficult to describe. We’ll describe networks that can approximate
continuous functions, and try to relate the size of the network to the quality of the approximation.

The context is that of approximating a continuous function f from a compact set K ⊂ Rn with val-
ues in Rm. We can reduce this to the task of approximating real valued functions: if we can perform
the latter task, we can approximate the coordinate functions fc for c ∈ [m] with m neural networks, that
we align in parallel, identifying their input layers, and considering the union of output neurons to be the
output layer. So we consider f : K → R.

The notion of distance we’ll use for measuring approximation will be the norm ∥f∥2 = ∥f∥22 =
∫
K
f(x)2dx.

We’ll use the following lemma from functional analysis:

An approximation lemma:

We consider a family F of real-valued continuous functions from a compact set K ⊂ Rn that is
bounded in the sense that ∥h∥ ⩽ b for all h ∈ F . By denoting with F the closure of the convex hull of
F , we can approximate an f ∈ F by first choosing choosing a parameter β > b2 − ∥f∥2, so that for any

N ⩾ 1, there exists a convex combination g of at most N functions of F , such that ∥f − g∥2 < β

N
.

Proof: First, we take a function f in the convex hull of F that approximates f , in the sense that
∥f − f∥2 < ε

N
for ε such that β − b2 + f∥2 > 2ε, where these choices are for later convenience.

We can write f =
m∑
i=1

λifi where fi ∈ F and λ is a simplex point, or said differently, a distribution. We

have no control on m, which is the parameter we want to bound by N . We can however try to approximate
f by a convex combination of at most N functions of F . We’ll do this by considering a random function g
obtained as a convex combination of N function among the fi, each chosen independently with probability

λi, in the hope that such functions are sufficiently close to f =

m∑
i=1

λifi. It turns out that we can use a

probabilitic method, where we show existence of a convex combination of at most N functions of F with
certain properties by bounding some expectation on this class of functions.

We write g =
1

N

N∑
j=1

gj , where gj is fi with probability λi, and the gj are chosen independetly. We’ll

now investigate E
(
∥g − f∥2

)
. Since g obeys a finite distribution, there is no problem in performing

the switch in E
(
∥g − f∥2

)
= E

(∫
K
(g(x)− f(x))2dx

)
=

∫
K
E
(
(g(x)− f(x))2

)
dx. By noting that

E(g) =
N

N
E(g1) by identical distribution, so that by choice of distribution for gj we have E(g) = E(g1) =

m∑
i=1

λifi = f , we see that E
(
(g(x)− f(x))2

)
= V ar(g(x)). By independence, square-linearity of the
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variance, and identical distribution, we get V ar(g(x)) =
1

N
V ar(g1(x)). Therefore E

(
(g(x)− f(x))2

)
=

1

N

(
m∑
i=1

λifi(x)
2 − f(x)2

)
by definition of the variance and our choice of distribution for gj . By linear-

ity of the integral, we then get E
(
∥g − f∥2

)
=

1

N

(
m∑
i=1

λi∥fi∥2 − ∥f∥2
)

. By bounding ∥fi∥ ⩽ b and

−∥f∥2 ⩽ ∥f − f∥2 − ∥f∥2 (FIX: Venkatesh calls it triangular inequality but what about the squares ?),

where we recall ∥f − f∥2 < ε

N
, we then get E

(
∥g − f∥2

)
⩽

1

N

(
b2 − ∥f∥2 + ε

N

)
.

Finally, with the "triangle inequality" (FIX v2), and linearity and monotonicity of expecationsE
(
∥g − f∥2

)
⩽

E
(
∥g − f∥2

)
+ E

(
∥f − f∥2

)
, so that E

(
∥g − f∥2

)
⩽

1

N

(
b2 − ∥f∥2 + ε+

ε

N

)
<

β

N
for our choice of β

and ε.

We can now use the probabilistic argument: there must be a convex combination g′ =
1

N

N∑
j=1

fij for some

indices ij such that ∥g′ − f∥2 < β

N
, for otherwise, ∥g − f∥2 ⩾

β

N
for all possible values of the random g

so that E
(
∥g − f∥2

)
⩾

β

N
in expectation, which we’ve just disproved.

COMPLETE: from Venkatesh

Capacity of a neural network
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35.3 Hidden Markov Models

Speach recognition is the task of recieving a sound signal and returning a sentence we estimate most likely
for the sound signal to represent. We can try to use statistical learning theory to solve this task. Usually,
the sound signal is first pre-processed, before it’s interpreted. In this phase, the sound signal is partitioned
into a finite sequence of features. Features can be vector valued and based on a pre-processing phase
useing Fourier analysis, for example. The important thing for our context is that possible features are
part of a finite set.

We’ll build an answer based on the following 3 forms of gathered statistical data. The most obvious
form of data are the probabilities pc(f) of letter/word c being expressed by feature f . We can gather this
data by letting a wide variety of people pronounce c and observing the feature f they produce, taking
the average number of appearances of f as pc(f). We can also anticipate the following problem: how
will a machine make the difference between "I" and "eye", two english words with different meanings
and spellings, but with the same pronunciation ? We’ll let the machine solve this the same way we do:
with context. Indeed, we can deduce from the rest of the sentence these words are used in, which of "I"
or "eye" is meant. In the context of HMMs, we’ll use the probabilities tc(w) of letter/word w following
letter/word c in the sentence (so our context is only the previous word). This data can be gathered by
analysing many texts commonly spoken, noting the times letter/word w followed letter/word c, and taking
the average over the times letter/word c appeared. Finally, for probability theory purposes, we’ll need the
probabilities α(c) of the sentence to be recognized starting with letter/word c. This can also be done by
taking averages on texts. We’ve just described an first example of an HMM:

Hidden Markov Models:

In an hidden Markov model (HMM), we’re given a finite set of states S and and finite alpha-
bet of characters A. We select an initial state s0 ∈ S according to a distribution α and from there, we
repeat the following: we output a character a ∈ A selected according to probability distribution psn over
A and move to a new state sn+1 according to probability distribution tsn over S.
The distributions are assumed independent of each other.

In our example, the states are letters/words and the alphabet are the features.

We can now phrase the speach recognition problem as an HMM problem. Given a sequence of char-
acters (features) a1, ..., an from the alphabet, what is the most likely sequence of states (letters/words)
s1, ..., sn that an HMM would have followed to produce a1, ..., an ?

First, let’s compute the probability of following sequence s1, ..., sn and observing a1, ..., an, which we’ll
denote by P (s1, ..., sn; a1, ..., an). Since the output an given state sn is independent of the previous states
and outputs, and since since state sn depends only on sn−1, we have recursion P (s1, ..., sn; a1, ..., an) =
P (s1, ..., sn−1, a1, ..., an−1)tsn−1(sn)psn(an). We can apply this recursion until we arrive at s1, which has
probabilty α(s1) of starting the sequence.

We can now look for the sequence for which P (s1, ..., sn; a1, ..., an) is highest, meaning that we wan to
solve max

s1,...,sn
P (s1, ..., sn; a1, ..., an). In our example, we search for the sequence of letter/words that is most

likely to have produced these features. Brute force enumeration leads us to consider |S|n cases, which is
impossible to perform in practice for speach recognition, where S is an entire language. Instead, we can
use a dynamic programming approach:
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The Viterbi algorithm:
If we know the most likely subsequence s∗1, ..., s

∗
k for k < n, which solves max

s1,...,sk
P (s1, ..., sk; a1, ..., ak), how

can we deduce the one solving max
s1,...,sk+1

P (s1, ..., sk+1; a1, ..., ak+1) ? By writing P (s1, ..., sk+1; a1, ..., ak+1) =

P (s1, ..., sk, a1, ..., ak)tsk(sk+1)psk+1
(ak+1), we see that the dependence of t on sk prevents us from doing

a direct recursion.

Instead, we’ll condition on the two last state: we have look for a recursion in max
s1,...,sk

P (s1, ..., sk, s; a1, ..., ak+1)

for a fixed s ∈ S. We have max
s1,...,sk

P (s1, ..., sk, s; a1, ..., ak+1) = max
r∈S

max
s1,...,sk−1

P (s1, ..., sk−1, r, s; a1, ..., ak+1)

so that max
s1,...,sk

P (s1, ..., sk, s; a1, ..., ak+1) = max
r∈S

max
s1,...,sk−1

P (s1, ..., sk−1, r, a1, ..., ak)tr(s)ps(ak+1). Now the

last part makes a recursion appear, a recursion in L(k, s) = max
s1,...,sk

P (s1, ..., sk, s; a1, ..., ak+1), which is

L(k, s) = max
r∈S

(L(k − 1, r)tr(s)ps(ak+1)). The base of this recursion is L(0, s) = P (s; a1) = α(s)ps(a1).

We can recover max
s1,...,sk

P (s1, ..., sk; a1, ..., ak) from the L(k, s) by noting max
s1,...,sk

P (s1, ..., sk; a1, ..., ak) =

max
s∈S

max
s1,...,sk

P (s1, ..., sk−1, s; a1, ..., ak), so that max
s1,...,sk

P (s1, ..., sk; a1, ..., ak) = max
s∈S

L(k − 1, s). Computing

the O(|S|n) values of L takes time O
(
|S|2n

)
, so this is quite an improvement over brute force.
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35.4 Markov Decision Processes

We consider an optimal control problem in which we move from states xk to states xk+1 in a finite state
space X according to dynamics given by f : X × U → X with xk+1 = f(xk, uk), where uk ∈ U is a
parameter in a finite sate of actions U that we can influence at each step. We can let the available actions
depend on the state one is in, so that we’d write U(xk) for the actions available at stage k if on is at state
xk. Further, one could let actions depend on the stage k, so that we’d have sets U(xk, k).
We start at initial state x0 and move N times according to the dynamics and our choices of actions until
we arrive at state xN . Each choice of uk at state xk incurs a cost g(xk, uk, xk+1), and at termination, we
have cost g(xN ) (we abuse notation by referring to all types of costs by g). The goal is to minimise the

total cost J(u0, ..., uN−1) = g(xN ) +
N−1∑
i=0

g(xk, uk, xk+1), where xk+1 = f(xk, uk).

For example, imagine us playing a game against of adversary who’s moves we can accurately predict.
For example, we could play the video game pacman against an AI. The states are the collection of posi-
tions of pacman, the ghosts and the remaining pallets. Actions are moving pacman up, down, left, right,
according to what’s available at the current position in the maze, so implicitly according to the state.
Costs could be 1 if packman moves to a ghostless paletless spot, 0 if it moves to a ghostless spot with a
pallet (from where on all actions lead to states in which this pallet isn’t present), and 10 if it encounters a
ghost. If we play for N turns, playing well corresponds to finding actions so that the total cost is minimum.

We can solve this problem as a shortest path problem on a directed graph. We introduce a source vertex s
representing x0, and a first layer of vertices representing X. We connect s to vertex x ∈ X if there is a u0
so that x = f(x0, u0). We then add layers of copies of X as vertices, so as to have N layers is total, and
connect vertex xk in layer k to xk+1 in layer k+1 along an arc if xk+1 = f(xk, uk) for some uk ∈ U . This
can be adapted to the cases where actions depend on the state (vertex), and the stage (layer). The edges
are given weight w(xk, xk+1) = g(xk, uk, xk+1). We then add a target vertex t that is connected from the
last layer along edges with weight g(xN ).

Then J(u0, ..., uN−1) = g(xN ) +

N−1∑
i=0

g(xk, uk) is the cost of an s-t-path in that graph, and minimising it

is equivalent to finding a shortest s-t-path in the graph. Note that since all directed s-t-paths have length
N +1, we can additively modify the costs without modifying the problem, in the following sense. For the
case that some costs are negative, or that we which to maximise costs (rewards) by minimising −J , which
for positive costs now has negative ones, we can set costs to g −min(g) ⩾ 0. The difference in objective
value between the problems for the two costs will allways be the constant (N +1)min(g), so that optimial
paths are the same in both problems. We can therefore reduce the problem to one in which weights are
positive, so that we may use Dijkstra.

Markov Decision Process:
In the pacman example, we assumed that we knew how the game AI would react at each step for each
action. What if we don’t have this information ? What if the AI takes random moves according to some
probability distribution ?
We now introduce randomization into the problem. Now, choosing action uk at state xk leads one to state
xk+1 with probability p(xk, uk, xk+1), in the sense that p(xk, uk, · ) is a probability distribution over X. We
could let the probabilities depend on the stage k, but we won’t discuss this case. We distinguish between
two cases: either, we know these probability distributions, so that we deal with a "model-based" problem,
or we don’t (but we assume such a probability distribution exists), so that we deal with a "model-free"
problem.
Since we don’t know at which state we’ll be at stage k, we now seek to find a policy given by the πk(x) ∈ U
to play if we’re at state x at stage k. With this policy, each sequence of states x0, x1, x2, ..., xN has prob-
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ability
N−1∏
k=0

p(xk, πk(xk), xk+1) of occurring, assuming that the transition probabilities are independent,

which we do.
We can however go one step further in randomization and choose our actions at random. In that case, we’ll
let πk,xk

be a probability distribution over U (or U(xk) or U(xk, k)), so that we select action u to be uk
with probability πk,xk

(u), independently of the previous moves. The probability of sequence x0, x1, ..., xN

occuring is then
N−1∏
k=0

 ∑
u∈U(xk,k)

πk,xk
(u) p(xk, u, xk+1)

, where we condition the probability of moving

from xk to xk+1 on that of doing so through action u, with total probability on u.
We then seek to solve the following problems of minimising expected costs:

Markov Decision Process (finite time):

A Markov decision process (MDP) on a finite time horizon is the problem of finding a policy
π that minimises the expected cost

J(π) =
∑

x1,...,xN∈X

(
N−1∏
k=0

p(xk, πk(xk), xk+1)

)(
g(xN ) +

N−1∑
i=0

g(xk, uk, xk+1)

)
in the case of deterministic

policy, and J(π) =
∑

x1,...,xN∈X

N−1∏
k=0

 ∑
u∈U(xk,k)

πk,xk
(u)p(xk, u, xk+1)

(g(xN ) +
N−1∑
i=0

g(xk, uk, xk+1)

)
in the case of randomized policy.

There are many variants of MDPs. For example, one can consider random costs, or an infinite time
horizon problem in which the costs get discounted by some factor δ ∈ [0, 1[, the the sense that costs
are

∑∞
i=0 δ

kg(xk, uk, xk+1) (which converges since there are only finitly many possible costs, so that g is
bounded).

Dynamic programming for the finite time problem:
We’ll first deal with a finite time MDP with determinisitc costs and policy.
We can take a recursion approach to the problem. The case where N = 1 allows just a single move and
the problem is to maximise

∑
x1∈X

p(x0, π0(x0), x1)(g(x1) + g(x0, π(x0), x1)), which can be solved for π0 by

searching the maximum over |U(x0)| possible π0(x0) ∈ U(x0).
Assume we have a method to know how to best play for N rounds, for any starting point x0, say with
policy π∗(N, x0) =

{
π∗0, ..., π

∗
N−1

}
: how do we find one for N +1 rounds ? The appeal of recursion is that

after the first move, we have N moves to go and we already know how to make the best of them. So we
will compare these possibilities by searching the minimum cost among playing π0(x0) ∈ U(x0), and then
playing π∗(N, x1), if playing π(x0) lead to x1.

To make the recursion formally appear, we consider∑
x1,...,xN∈X

(
N−1∏
k=0

p(xk, πk(xk), xk+1)

)(
g(xN ) +

N−1∑
i=0

g(xk, πk(xk), xk+1)

)
, in which we split the sums as∑

x1,...,xN∈X
=
∑
x1∈X

∑
x2,...,xN∈X

, which allows us to factor

∑
x1∈X

p(x0, π0(x0), x1)
∑

x2,...,xN∈X

(
N−1∏
k=1

p(xk, πk(xk), xk+1)

)(
g(xN ) +

N−1∑
i=0

g(xk, πk(xk), xk+1)

)
. To isolate
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the first cost at i = 0, we consider
∑

x2,...,xN∈X

(
N−1∏
k=1

p(xk, πk(xk), xk+1)

)(
g(xN ) +

N−1∑
i=0

g(xk, πk(xk), xk+1)

)
,

in which we distribute the product and swap
∑

x1,...,xN∈X
and

N−1∑
i=0

to get

∑
x2,...,xN∈X

(
N−1∏
k=1

p(xk, πk(xk), xk+1)

)
g(xN ) +

N−1∑
i=0

∑
x2,...,xN∈X

(
N−1∏
k=1

p(xk, πk(xk), xk+1)

)
g(xk, πk(xk), xk+1).

For the i = 0 term, we can factor out g(x0, π(x0), x1) as it doesn’t contain the summation terms

x2, ..., xN ∈ X. We then note that
∑

x2,...,xN∈X

(
N−1∏
k=1

p(xk, πk(xk), xk+1)

)
= 1 as these are the probabil-

ities of all possible sequences of states, starting from state x1, of length N − 1.
Pulling out g(x0, π0(x0), x1) this way yields a cost of

∑
x1∈X

p(x0, π(x0), x1)g(x0, π0(x0), x1) + p(x0, π(x0), x1)∑
x2,...,xN∈X

(∏N−1
k=1 p(xk, πk(xk), xk+1)

)(
g(xN ) +

∑N−1
i=1 g(xk, πk(xk), xk+1)

)
, which can be rewritten as

Eπ0(x0)+
∑
x1∈X

p(x0, π0(x0), x1)Vπ1,...,πN−1(N − 1, x1), whereEπ0(x0) =
∑
x1∈X

p(x0, π0(x0), x1)g(x0, π0(x0), x1)

is the expected cost incurred at state x0 by playing according to π0, and Vπ1,...,πN−1(N − 1, x1) is the cost
of the subpropblem of N − 1 stages, staring at x1, by playing π1, ..., πN−1. We then have recursion
Vπ0,...,πN−1(N, x0) = Eπ0(x0) +

∑
x1∈X

p(x0, π0(x0), x1)Vπ1,...,πN−1(N − 1, x1).

We know that by optimality of π∗1(N − 1, x1), we have Vπ1,...,πN−1(N − 1, x1) ⩾ Vπ∗
1 ,...,π

∗
N−1

(N − 1, x1) for

all policies π. So for all policies, Vπ0,...,πN−1(N, x0) ⩾Eπ0(x0)+
∑
x1∈X

p(x0, π0(x0), x1)Vπ∗
1 ,...,π

∗
N−1

(N − 1, x1).

Now, by minimising Eπ0(x0) +
∑
x1∈X

p(x0, π0(x0), x1)Vπ∗
1 ,...,π

∗
N−1

(N − 1, x1) over π0, we get π∗0, which will

satisfy Vπ0,...,πN−1(N, x0) ⩾ Vπ∗
0 ,...,π

∗
N−1

(N, x0) for all policies π.

To analyse our dynamic programing procedure, note that at each step, we compute |X| minima (one
per state x0) over O(max

x∈X
|U(x)|) possibilities of π0(x0), to get the |X| images of π∗0, based on the |X|

values Vπ∗
1 ,...,π

∗
N−1

(N − 1, x1) of the previous iteration.

The Bellman equation:
We now discuss that case of an infinite time horizon, again with deterministic costs and policies.
We can think of this problem as having objective value

lim
N→∞

 ∑
x1,...,xN∈X

(
N−1∏
k=0

p(xk, πk(xk), xk+1)

)(
δNg(xN ) +

N−1∑
i=0

δkg(xk, πk(xk), xk+1)

) for some discount

factor δ ∈]0, 1[ that results will depend on. The dynamic programming approach doesn’t work here, be-
cause there is no base case. Generally, the idea of a policy that depends on the stage k is flawed, as we’d
have to base it on infinitely further ones. This is why we’ll restrain ourselves to seek the best stationary
policy, which is a policy that’s independent of the stage, the the sen that all πk = π0.

We can adapt the previous part to get, Vπ0(x0) = Eπ0(x0) +
∑
x1∈X

p(x0, π0(x0), x1)δVπ0(x1), where

Vπ0(x0) = lim
N→∞

 ∑
x1,...,xN∈X

(
N−1∏
k=0

p(xk, π0(xk), xk+1)

)(
δNg(xN ) +

N−1∑
i=0

δkg(xk, π0(xk), xk+1)

) and
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Eπ0(x0) =
∑
x1∈X

p(x0, π0(x0), x1)g(x0, π0(x0), x1) is the same. Note the appearance of the discount factor

in the recursive relation. We therefore get the following linear equations on the objective value:

Bellman equations:

The equations Vπ0(x0) = Eπ0(x0) + δ
∑
x1∈X

p(x0, π0(x0), x1)Vπ0(x1) over variables Vπ0(x) for x ∈ X

for a linear system of equaitons called the Bellman equations. They determine the objective value for
a fixed stationary policy π0, a discount factor δ ∈ [0, 1[ uniquely, since this system is invertible.

Proof: The system has form (I − δP )V = E. By recalling the identity I = (I −A)
(
I +A+A2 + ...

)
for

matrices such that I +A+A2+ ... converges, we seek the convergence for A = δP . To see it, note that all
entries of all Pn are in [0, 1], which can be see from induction: it’s true for n = 1 and in a product P ×A,
the fact that P ’s lines are probability distributions allows us to get (P ×A)ij ⩽ max

k
(Akj), so that for the

step A = Pn, we get the inductive step.

Therefore, for A = δP , then entries of I +A+A2 + ... can be bounded by 1+ δ+ δ2 =
1

1− δ
, so that this

positive series converges.

Value iteration:
Theoretically, we could solve such a system for all O

(
|X|maxx∈X |U(x)|

)
possible stationary policies, and

find the one with the smallest cost for a given starting point. However, we present a different approach.
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35.5 Adversarial machine learning

"AdvML" books and papers
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35.6 Solutions
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36 Games, Mechanisms, Markets

36.1 A game on graphs: cops and robbers

The game of cops and robbers (with k cops) is played by two players on a graph G. In the first round,
the 1st player, the police inspector, places k cops on nodes of the graph (possibly the same node). Then,
in the second round, the 2nd player, the robber, chooses a vertex of the graph to start on. Next, cops
and robbers alternated taking moves, each being able to move all their pieces from vertex to vertex along
edges of the graph. The police inspector wins if there is a turn in which he moves one of his cops on a
vertex occupied by the robber during his move. Otherwise, the robber wins, meaning that the robber has a
strategy that will allow him to evade cops forever. Since there are (k+1)|V | configurations of cops and rob-
bers on the graph, a sequence of moves by the players will eventually return to a visited configuration. So
if the police inspector has no strategy to catch the robber in less then (k+1)|V | turns, then the robber wins.

Ex.CRTC: Show that on a tree, k = 1 cops is enough for them to win, whereas on a cycle of size
⩾ 4 and for k = 1 the robber wins.

As the exercise suggests, we’re interested in how many cops are necessary, given G, for the cops to
win. This number can’t exceed |V |, as the cops could cover all vertices and win immediately.

Cop number:

For a graph G, the cop-number c(G) is the smallest k such that the robber has no winning
strategy for the game on G.

We’ll now develop a polynomial time algorithm that decides if c(G) ⩽ k for a fixed k. The algorithm is
based on dynamic programming and checks if the robber has a winning strategy. The idea is that the
strategy only depends on the current configuration of cops and the robber, so that for a given configura-
tion of cops, the robber has a set of vertices from which it has an indefinite evasion strategy. We’ll set
up a dynamic programming type equation for these sets of vertices by considering their interaction with
a change in configuration by the cops.
We consider the "strong power graph" sp(G) of G which will represent the game configurations in a com-
pact form: V (sp(G)) is made of k-tuples of vertices of V (G), which represent the positions occupied by
the cops. We add an edge between (u1, ...uk), (v1, ...vk) ∈ V (sp(G)) of the power graph if the cops can
move from one configuration to the next, meaning that (ui, vi) ∈ E(G) for all i. We now investigate the
positions f(u) ⊆ V (G) for cop configuration u ∈ V (sp(G)) from which the robber can evade the cops
indefinitely, if he starts at these vertices on turn 2.

This function f has certain properties, if c(G) > k. For starters ∅ ≠ f(u) ⊆ V (G) for all configura-
tions u ∈ V (sp(G)), as otherwise the cops could place themselves in configuration u for which ∅ = f(u)
in turn 1 so that the robber can’t win from any starting vertex, meaning that the cops will win, so that
c(G) ⩽ k. Next, note that f(u) ⊆ V (G)\δG({u1, ..., uk}), meaning that the winning starting vertices
of the robber aren’t adjacent or occupied by a cop (so δG denotes the closed neighbourhood of a set of
vertices in G): otherwise, the cops would catch the robber on turn 3. Finally we set up the dynamic
programming equation: note that if the cops can move from configuration u to configuration v, then the
robber should be able to move to a vertex of f(v), to stay safe, as he can play the indefinite evasion
strategy from a vertex of f(v). This translates to f(u) ⊆ δG(f(v)) for all (u, v) ∈ E(sp(G)): if the robber
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is in f(u) and has an indefinite evasion strategy, then when the cops move from u to v, the robber moves
according to the strategy to a vertex from which he can keep evading indefinitely, which is therefore in f(v).

Conversely, a function f satisfying ∅ ≠ f(u) ⊆ V (G)\δG({u1, ..., uk}) and f(u) ⊆ δG(f(v)) for all
u ∈ V (sp(G)) and (u, v) ∈ E(sp(G)) can be used by the robber to evade the cops indefinitely.
Indeed, If cops start with configuration u(1) on turn 1, then the robber can start on any vertex in
f
(
u(1)

)
̸= ∅. Induction then shows that the robber can move to the safe vertices in his turn, at each turn,

as when the cops move from configuration u(n) to u(n+1), then the robber at f
(
u(n)

)
can move to a vertex

of f
(
u(n+1)

)
̸= ∅, as f

(
u(n)

)
⊆ δG

(
f
(
u(n+1)

))
. If the cops ever caught the robber on turn n, then on

turn n − 1, when the robber was at a vertex of f
(
u(n−1)

)
, a cop at one of the vertices u(n−1)

1 , ..., u
(n−1)
k

must have been in the neighbourhood δG

(
f
(
u(n−1)

))
so as to move to the robbers vertex on the next

turn, so that f
(
u(n)

)
∩ δG

(
u
(n−1)
1 , ..., u

(n−1)
k

)
̸= ∅, contradicting f(u) ⊆ V (G)\δG(u1, ..., uk). So this is a

winning strategy for the robber.

Now that we’ve set up a dynamic programming type equation for a winning strategy of the robber,
we need to solve it, showing that c(G) > k, or prove that it has no solutions, showing that c(G) ⩽ k.
We determine this with an algorithm that constructs a sequence fi of functions that refine the winning
positions for a cop configuration u. We start with f0(u) = V (G)\δG(u1, ..., uk), which are the winning
starting vertices for a 3 turn game. We construct fi+1 from fi by restraining the sets of winning starting
vertices according to one move by the cops. That is, we set fi+1(u) = fi(u) ∩ δG(fi(v)) if the cops can
move from u to v, so that by starting in fi+1(u), the robber can move to fi(v) for a move to any v the
cops could make, ensuring the robber will survive the next turn too. More precisely, we loop through
(u, v) ∈ E(sp(G)) and update fi+1(u) = fi(u) ∩ δG(fi(v)) and fi+1(v) = fi(v) ∩ δG(fi(u)).
By construction, fi+1(u) ⊇ fi(u) at each iteration, so that the sequence fi will eventually stabilize, as one
can take only finitely many subsets for finitely many configurations u. At stabilization, we’ll have fi(u) =
fi(u)∩ δG(fi(v)), meaning fi(u) ⊆ δG(fi(v)), for all (u, v) ∈ E(sp(G)). So the output verifies the dynamic
programming equation. The inclusions fi+1(u) ⊇ fi(u) and the initial f0(u) = V (G)\δG(u1, ..., uk) imply
the condition fi(u) ⊆ V (G)\δG(u1, ..., uk) at stabilization. Only the condition fi(u) ̸= ∅ remains for the
stabilization to represent a winning strategy. We can check this in our algorithm once stabilization has
occurred. In the positive case, we have our desired function, and c(G) > k. If we encounter a configuration
u for which fi(u) = ∅, then we can prove that this implies that no f satisfying the characterisation exists,
so that c(G) ⩽ k.
Indeed, if a function with the desired properties g exists, then g(u) ⊆ f0(u) and we’ll show inductively
that g(u) ⊆ fi(u): therefore if a configuration u for which fi(u) = ∅ is encountered, then g can’t exist as
∅ ≠ g(u) ⊆ fi(u) = ∅. In the updates, fi+1(u) = fi(u) ∩ δG(fi(v)) and by induction g(u) ⊆ fi(u) and
g(v) ⊆ fi(v), so that g(u) ⊆ δG(g(v)) ⊆ δG(fi(v)) (the first inclusion is due to the characterisation), hence
g(u) ⊆ fi+1(u).

What is the running time of our algorithm ? The updates from fi to fi+1 require looping over the

edges of E(sp(G)) for which there are at most
(
|V (sp(G))|

2

)
, where |V (sp(G))| = |V (G)|k. Computing

intersections and neighbourhoods can be done in times |V (G)| and |E(G)| ⩽
(
|V (G)|

2

)
respectively. So

this loop is in O
(
|V |2k+2

)
. We perform this loop until fi stabilizes, which doesn’t happen when a fi(u)

decreases by at least a vertex among at most |V |, for one of the |V (G)|k configurations u. So stabilisation
must occur in O

(
|V |k+1

)
. Therefore the whose procedure is in O

(
|V |3k+3

)
, as this dominates initialisa-
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tion of f0 and the checks form emptiness at the end.

The fact that this runtime is exponential in k prevents this algorithm from being used as routine in
a binary search on k for the cop number of a graph. In fact, we’ll show that it’s unlikely that a polynomial
time algorithm for this task exists, as finding the cop number is NP-complete.

TO DO:chap 5 of cops and robbers for NP completeness.
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36.2 A game on graphs: Shannon’s switching game

This game is played on a connected graph G by two players Red and Blue. The players alternatively take
turns and color an edge of the graph that hasn’t yet been colored, or skip their turn. If at some point the
graph spanned by the red edges contains all vertices and is connected, then Red wins the game. Otherwise,
if all edges are colored and the graph induced by the red edges isn’t connected, Blue wins.

A necessary condition for Red to win is to be able to color a spanning tree: if the graph induced by
the red edges spans all vertices and is connected, it must contain a spanning tree. However, if Red at-
tempts to color tree T , it’s possible for Blue to color an edge of T and prevent Red from obtaining the
desired tree. In that case, Red will have to switch the tree intended to be colored.

Assume Red want s to color a spanning tree T1 of G. If Blue colors an edge e ∈ T1, then Red can
still fix things by coloring an edge a connecting the two components of T1\e in the next turn, if such an
edge exists. In that case, the tree Red will intend to color will be T1\e ∪ a, and a at least is already
colored. Under what conditions does such an edge a always exist, leading to a winning strategy for Red ?

At this stage, one may think of the tree exchange property (hence the name "switching game"). If
there are edge disjoint spanning trees T1 and T2 in G, then if Blue colors e ∈ T1, there must be a unique
edge a ∈ T2 connecting the components of T1\e. For Red to win, the edges of T2 should remain uncolored
by Blue.

To get a clearer picture, we’ll contract the red edges at each turn: if Red has a strategy to find a spanning
tree in the contracted graph, it will also have that strategy in the initial graph, as it can color the edge to
be contracted, and color one (of the two possible) edges in the initial graph corresponding to an edge to
be colored in the strategy on the contracted graph.
We’ll show that Red has a winning strategy if G has two edge-disjoint uncolored spanning trees, by in-
duction on the number of vertices, and by contracting edges at each step. If T1 and T2 are these spanning
trees, then if Blue goes first, we disjoint cases on the edge colored by Blue. If blue colors e ∈ T1, then Red
colors a ∈ T2 connecting the components of T1\e. When contracting a, the image of T1\e ∪ a is still a
spanning tree, as possible cycles would have been in the initial tree. So is the image of T2 and the image
trees are disjoint, as the only common edge is the one that was contracted. Red can do the same thing
when Blue colors an edge e ∈ T2, following the same arguments with swapped indices.

We also have to consider the case in which Blue chooses an edge in none of the trees, or skips turn.
In the first case, we note that such an edge f closes a unique cycle in T1 and that we can replace T1 by
T1\f ′ ∪ f where f ′ ∈ T1 was an edge on that cycle. The spanning tree T1\f ′ ∪ f is still disjoint from
T2, but now Blue has colored an edge of it, so we can apply the same reasoning as before. In the second
case, Red can color any edge in e ∈ T1, but we have to modify T2 to proceed, as e closes a unique cycle
in T2, so that contracting e creates a cycle in the image of T2. But we can fix this by just deleting (from
our objective tree) any edge of the cycle in the image of T2, so that the contracted graph still has two
edge-disjoint spanning trees.

The base case of this induction is for K4, as graphs with fewer edges or vertices can’t have edge-disjoint

spanning trees (we have to satisfy 2(|V |− 1) ⩽

(
|V |
2

)
). These cases, can be handle with case disjunctions

and enumerations.
Note that checking if a graph has two edge disjoint spanning trees can be done with matroid partitioning.
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36.3 Stable matchings

In the stable matching problem, we’re given n companies and n workers, which we hope to match 1-to-1.
The twist is that both the companies and the workers have preferences on their choices: each company c
has ranked the the workers w by a strict order, and vice-versa. How do we get a matching that accounts
for these preferences ?
One idea is to avoid situations that are inefficient. The case we want to avoid is that of matching compa-
nies c and c′ and workers w and w′ respectively, when both c has preference w′ >c w (it prefers w′ to w)
and w′ has preference c >w′ c′. If this happens, our matching system would be circumvented by w′ and c,
leaving us with more possibly dissatisfied matchings. A matching in which this doesn’t occurs is called a
stable matching.

The Gale-Shapely algorithm:
The Gale-Shapely algorithm simulates in a sense the real world. We let the workers apply for their favorite
companies, and the companies stick to a worker as long as no prefered one applies:

While there is a worker w that isn’t matched

w proposes to his favorite company c to
which he hasn’t already applied.

c isn’t matched or prefers w
to his current matched worker

YesNo

Match c and w, and unmatch
c’s previous worker.

We make two remarks: over the course of execution, the companies that a worker applies to gets worse in
his ranking, and the workers a company is matched with gets better in their ranking.
From the workers perspective, this can be seen from the second box from the top of the flowchart, and for
the companies, it’s the disjunction box. This will ensure termination, as each worker can change company
at most n times, increasing in preferences, and since there are n workers, we have at most n2 steps. Next,
note that all workers are matched at termination, due to the exit condition of the while loop, and since
there are ncompanies as well, it’s a perfect matching.

Is the final matching a stable one ? Assume for contradiction that there is matching of companies c
and c′ and workers w and w′ respectively, when both c has preference w′ >c w and w′ has preference
c >w′ c′. Since w′ is matched with c′ at termination, this company is the last one he applied to. When he
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applied, c already was matched to a preferred worker w′′ >c w
′, since it rejected w′ (flowchart disjunction).

Since for companies, the workers get better, and company c ended up with w, we must have w >c w
′′. By

transitivity w >c w
′, which we assumed the opposite of.
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36.4 Equilibria

So far, we searched an optimal solution in problems in which we could modify all parameters. Game theory
studies optimization problems in which other agents may choose parameters that affect our objective
value.

Game theory concepts:

We consider m agents/players i, each with a set of parameters (sometimes called a strategy) pi ∈ Pi

to choose (where Pi is a set from which parameters are chosen from, for example Rdi) and a utility
function (or payoff) ui(p1, ..., pm) to maximise.

Classic examples are two-player matrix games. Here m = 2, player 1 chooses action i ∈ [k] = P1 and
player 2 action j ∈ [r] = P2, and they receive payoffs u1(i, j) = aij and u2(i, j) = bij respectively.
In its randomised version, the players choose a probability distribution and receive expected payoffs under

the product distribution. Then P1 =

p1, ..., pk ∈ R :
∑
i∈[k]

pi

 and P2 =

q1, ..., qr ∈ R :
∑
i∈[r]

qi

 and

u1(p1, ..., pk, q1, ..., qr) =
∑
ij

piqjaij and u2(p1, ..., pk, q1, ..., qr) =
∑
ij

piqjbij .

A first context to be studied is when players give initial parameters and update these parameters se-
quentially in a greedy way.

More game theory concepts:

A best reply of agent i to given choices (pj)j∈[m]\i of the other agents is a solution to
max(ui(p1, ..., s, ..., pm)) st. s ∈ Pi. Ignoring the dynamics of iterated best reply, we prefer study-
ing the equilibria that should arise from them: Nash equilibria. Such an equilibrium is achieved in a
choice of parameters such that for all agent, their current parameter is a best reply, so that there is no
incentive to change parameters. Formally,

(
p∗j
)
j∈[m]

is a Nash equilibrium if for all i ∈ [m], p∗i solves
max (ui (p

∗
1, ..., s, ..., p

∗
m)) st. s ∈ Pi.

For example for the deterministic matrix game with A =

(
1 1
2 2

)
and B =

(
1 2
1 2

)
, there is a unique

Nash equilibrium in slot (2, 2), for A =

(
1 2
2 1

)
and B =

(
2 1
1 2

)
, there are no Nash equilibria, and for

A =

(
2 1
1 2

)
and B =

(
2 1
1 2

)
there are two Nash equilibria in slots in slot (1, 1) and (2, 2), as can be

checked by looking for better replies for each player at all the slots.

For deterministic actions, we can characterise and find the Nash equilibria of a two player matrix game
rather simply. Indeed, the pair of actions i ∈ [k] and j ∈ [r] for a Nash equilibrium when, taking the first
players viewpoint, atj ⩽ aij for all t ∈ [k], and, taking the second players viewpoint, bit ⩽ bij for all t ∈ [r].
This is a direct translation of what it means to have mutual best responses. We can find all equilibria,
if any, by computing the maximum entries (and their indices) on the columns of A and the rows of B in
O(kr) comparisons and then checking if the maximum on column j is attained for i and the maximum on
row i is attained for j, for all such pairs.

For randomised actions, things get much more difficult. How do we even compute best responses ?
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If player 2 play strategy q, then the expected payoff of player 1 when playing p is ptAq. Finding a best

response is maximising (Aq)tp on the distribution simplex

{∑
i∈[k] pi = 1

p ⩾ 0
. We know from linear pro-

gramming (or with a little thought) that this maximum will be a convex combination of vertices of the
simplex on which the objective is maximum, or said differently, the optimal distribution will have its
support in the indices for which (Aq)i is maximum.

Formally, there is a u ∈ R such that Aq ⩽ u.1 and such that pi > 0 ⇒ (Aq)i = u. Now, in a
Nash equilibrium, this should also hold for player 2, so that there is a v ∈ R such that Bp ⩽ v.1
and such that qi > 0 ⇒ (Bp)i = v. Conversely, if we can find variables satisfying these conditions,
then the distributions form Nash equilibria, since for player 1, any other strategy p′ yields objective

p′tAq ⩽ u

∑
i∈[k]

p′i

 = u =
∑

i∈supp(p)

upi =
∑

i∈supp(p)

(Aq)ipi = ptAq, so p is a best reply, and likewise for

player 2.

We can solve the problem of finding such distributions with an MIP-feasibility problem, by modifying it a
bit. For reasons that will become relevant later, we note that the game on A′ = sA+ T and B′ = sB + T

for T =

t ... t
...

...
t ... t

 and s > 0 has the same best responses as in the original game, as ptA′q = sptA′q+ t,

so that the maximising distributions are the same.

Therefore, by adding T with t > −min
i
j(aij , bij) and multiplying by s =

1

maxij(aij + t, bij + t)
> 0 we

can wolg assum that A and B have entries in [0, 1].

To handle the support, we introduce binary indicator variables xi, yi ∈ {0, 1} that indicate if i is in
the support or not. This can be done with constraints pi ⩽ xi and qi ⩽ yi, which doesn’t restrain the
possible distributions, as pi, qi ⩽ 1. We then have pi > 0⇒ xi = 1 and qi > 0⇒ yi = 1.
Next, we add constraints 0 ⩽ u − Ai∗q ⩽ 1 − xi and 0 ⩽ v − Bi∗p ⩽ 1 − yi, so that pi > 0 ⇒ (Aq)i = u
and likewise for player 2. Together with the simplex constraints, this MIP-feasibility problem’s solution,
if any, are Nash equilibria.

The converse is what required the (non-binding) assumption that A and B have entries in [0, 1].

Indeed, for a Nash equilibrium (p, q), the simplex constraints are sarisfied, by setting xi =

{
1 : pi > 0

0 : else

and yi =

{
1 : qi > 0

0 : else
the indicator constraints are satisfied, and finally by setting u = max

i
((Aq)i) and

v = max
i

((Bp)i), the constraints 0 ⩽ u − Ai∗q ⩽ 1 − xi and 0 ⩽ v − Bi∗p ⩽ 1 − yi are satisfied. To

see the latter, note that u = max
i

((Aq)i) ⩾ (Aq)i and since the entries of A are in [0, 1], 0 ⩽ (Aq)i ⩽ 1

(bound aij and sum distribution) and in particular u = max
i

((Aq)i) ∈ [0, 1] so that u−Ai∗q ⩽ u ⩽ 1. Now

0 ⩽ u− Ai∗q ⩽ 1− xi when xi = 0, but otherwise, by the Nash equilibrium, we know that (Aq)i = u, so
the constraint is still valid.

There are more direct, but still possibly exponential and more confusing algorithms for finding Nash
equilibria for two player randomised matrix games, such as the Lemke-Howson algorithm.
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We may also consider a different form of best responses:

Security level:

n a two player matrix game, we consider the case in which players hope to maximise the expected
worst case outcome. By playing p, the first player expects to get a payoff among the entries of ptA. If the
player’s don’t know the adversaries strategy, they may be inclined to maximise the worst case outcome.
We call the value max

p
min
i

(
ptA
)

the first players security level.

The securitiy level can be comuted by solving the following LP: max v st.

{
ptA ⩾ v.1t

p ⩾ 0, 1tp = 1
for player 1

and max v st.

{
Bq ⩾ v.1

q ⩾ 0, 1tq = 1
for player 2. Security levels have the advantage of being easy to compute,

compared for Nash equilibria, and easy to generalize to n-player games as well. Another advantage is that
security levels are unique, while Nash equilibria aren’t.

Another question that arises is that of cooperation. When is it reasonable for players in a n-player
game to team up and form coalitions ? In a coalition, a group of players try to as a single player. We
consider can consider multiple models for this phenomenon.

In a first scenario, players may "trade" payoffs in the sense that in a coalition of players S ⊆ [n], a
coalition contract is given, and for outcome p1, ...pn, player i receives fi

∑
j∈S

uj(p1, ...pn), where the split

is given by distribution f ⩾ 0, 1tf = 1. This assumes that utilities can be transferred without additional
costs, for example if ui = uj for all players i, j.
Since maximising fi

∑
j∈S

uj(p1, ...pn) is equivalent to maximising
∑
j∈S

uj(p1, ...pn), all players have the in-

centive to maximise this quantity, regardless of the contract f .

In the case of finite sets of actions, one can compute the Nash equilibria by considering the coalition
to be a single player, playing actions of form (pi)i∈S and getting payoffs

∑
j∈S

uj(p1, ...pn).

We now consider the security level of this coalition. If player i ∈ S plays distribution (pi,a)a over actions a

available to i, then for a set of actions ak for k ∈ [n]\S, the coalition gets

(∏
i∈S

pi,ai

)∑
j∈S

uj(a1, ..., an)

,

assuming that the randomisation for the players are independent. Finding the security level involves

solving a non-linear program: max v st.

{(∏
i∈S pi,ai

) (∑
j∈S uj(a1, ..., an)

)
⩾ v

pi ⩾ 0, 1tpi = 1
. In this case, when

the randomisations for the players are independent one cannot consider the coalition as acting as a single
player, since not all probability distributions over the combinations of actions can be achieved by products.

For example, in a coalition of two players each have two actions, the distribution given by
(

0 1/2
1/4 1/4

)
can’t be achieved as a product since if it where, p1q1 = 0, so that at least on of p1q2 = 1/2 or p2q1 = 1/4
should actually be 0. So the players have to randomise on the combinations of actions for them to truly
be considered as a single player.
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So at this stage, each coalition S with contract fS has a security level of vS , independently of whether the
players not in the coalition form coalitions themselves, as the security level is a worst case bound over all
combinations of adversarial actions. We can then determine if and which coalitions form assuming that
players maximise their security fS,ivS . We can then imagine the following scenario, in which players i
choose to declare wanting to build coalition S ⊆ [n], where i ∈ S, in a negotiation phase. If all players in
S declare wanting to build S, then each get payoff fS,ivS in the action phase. Otherwise, then get payoff
f{i},iv{i} for playing without cooperating in the action phase. We’re then dealing with a n-player matrix
game where actions are choices of declarations S ⊆ [n], and payoffs are fS,ivS or f{i},iv{i}. The Nash equi-
libria of this game correspond to declarations of coalitions which are best responses to the declarations of
the other players.

We now consider the case in which players may not share payoffs. By randomising collectively, we can

maximise the minimum security of the players by solving max v st.

{
p(ai)i∈S

uj(a1, ..., an) ⩾ v

p ⩾ 0, 1tp = 1
where

the first constraints range over the all players j and all actions of non-colluding players ak for k ∈ [n]\S.
We then get the same scenario as before, except that the payoffs of the delcaration game are now vS
instead of fS,ivS .

Finally, we remark that despite solving LPs as a routine, we have constraints exponential in the number of
players (the producs of actions and the fact that for the declaration games, the action space is one made
of subsets).
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36.5 Repeated games

Playful into, chap 10
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36.6 A game on graphs: network congestion game

Network congestion game:

In a network congestion game on a directed graph D, n players i choose a path Pi from si ∈ V
to ti ∈ V . For such choices, we denote by xe(P1, ..., Pn) the number of players for which the edge e
is on their path, so |{i : e ∈ Pi}|. The cost of using edge e when xe(P1, ..., Pn) players are using it
is ce(xe(P1, ..., Pn)), where ce(0) = 0 and ce is increasing. This models congestion, as one can see by
picturing the costs as traveling time: the more people want to use the same road, the slower they’ll drive
on it. The cost for each player i is ui(P1, ..., Pn) =

∑
e∈Pi

ce(xe(P1, ..., Pn)), which they desire to minimise.

When studying the question of the existence and the convergence to Nash equilibria, the notion of po-
tential is useful. A potential is a function p(P1, ..., Pn) that will strictly decrease when any player
switches to a better response: if there is an i so that ui(P1, ..., P

′
i , ..., Pn) < ui(P1, ..., Pi, ..., Pn), then

p(P1, ..., P
′
i , ..., Pn) < p(P1, ..., Pi, ..., Pn). The point of a potential is that it prevents cycling in the ac-

tion/parameter/strategy space: if a sequence of better replies by arbitrary players would lead back to the
initial state, we’d contradict the strict deacrisingness of the potential. In particular, when the action space
is finite (which is the case here, as they’re only finitely many s-t-paths), this implies that any sequence of
better replies must eventually arrive at a state in which no better replies exist, providing existence and
the convergence to Nash equilibria.

Potentials represent a quantity that is optimised whenever any player optimises. Writing s = (P1, ..., Pi, ..., Pn)

and s′ = (P1, ..., Pi, ..., Pn), we have ui(s′)− ui(s) =
∑

e∈P ′
i\Pi

ce(xe(s) + 1)−
∑

e∈Pi\P ′
i

ce(xe(s)) < 0, since the

number of players using edges in P ′
i\Pi increased by the player i and the number of players using edges in

P ′
i∩Pi stayed the same as i kept them. Our goal is to use this to find a quantity depending on this but not on

the player i. We can for example consider the quantity p(s) =
∑
e∈E

ce(xe(s)), which is the total cost without

multiplicity. Note that p(s′)− p(s) =
∑

e∈P ′
i\Pi

(ce(xe(s)+ 1)− ce(xe(s)))+
∑

e∈Pi\P ′
i

ce(xe(s)− 1)− ce(xe(s))),

so it may fail to be a potential. To avoid having to swap costs on the edges, we can consider p(s) =∑
e∈E

∑
i⩽xe(s)

ce(i), for which p(s′)− p(s) = ui(s
′)−ui(s), as costs to swap out where already in the potential

of the previous states potential. This is Rosenthals potential.

Note that when p(s) is minimum, s is a Nash equilibrium, as the existence of better replies would con-
tradict minimality, due to p decreasing under them. This provides a way of computing one (a priori not
unique) Nash equilibrium for network congestion games: we minimise the potential.

We show how this can be done in our case when all destinations ti = t are the same.
To find the minimum of p(s) =

∑
e∈E

∑
i⩽xe(s)

ce(i), we create a flow network on D as follows. We replace each

edge by n (number of players) of them, forming a directed multigraph, and subdiving each to return to a
directed simple graph. Each edge has capacity 1, and we given one of the subdivided edges cost ce(i) for
i ⩽ n, for each of the multiedges we created intermediately. We solve a minimum cost flow problem on
this graph with demands 1 and −1 at the si and ti respectively (cumulated if the nodes are equal; in our
context, there is one sink t with demand −n), and 0 elsewhere. A crucial note is that the minimum flow
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will be integral. Then, the cost of this flow will be
∑
e∈E

∑
i⩽xe(s)

ce(i), because it must use the edges of least

weight for each multiplied and subdivided edge e (otherwise, we could shift the flow to the cheaper edges,
on a bundle of multiplied and subdivided edges, to get a cheaper flow), so that the coast at each bundle
of multiplied and subdivided edges corresponding to initial edge e is

∑
i⩽xe(s)

ce(i).

To recover the paths from this flow, we use a gaph search (ex.: DFS) from root sn in the subgraph
of the initial graph induced by the edges e for which the corresponding bundle of multiplied and sub-
divided edges carries flow. There must be a path to t to be found this way, otherwise the connected
component of sn has net non-zero flow, which is impossible. We then modify the flow by adjusting de-
mands on sn (decrease to 0) and t (decrease by 1), and set the flow along edges corresponding to those of
the path to 0. We apply this recursively, until all paths are found.
If the ti were different, it’s possible that the minimum cost flow follows paths that lead to the wrong
destinations, so these aren’t feasible moves for the players.

We conclude this section with Braess Paradox. Consider the two player congestion game with linear
costs, where cost coefficients are show next to the edges:

s

a

b

t

x

x13

13

0

For the network without the dotted edge, the Nash equilibria is when the players choose different paths
among (s, a, t) and (s, b, t), each having cost x+13. If we add the dotted edge however, a new path of cost
2x appears as an option. One might think that adding this edge would help both players in lowering both
their costs, as they don’t have to pay costs on it. This is true for small x, as for x = 2, if both players take
path (s, a, b, t), the cost for each is 2 × 2 + 2 × 2 = 8, which beats all other combinations, which would
have cost at least 13, since they would have to use one of the corresponding edges.

However, for x = 5, the case when both players take path (s, a, b, t) is still the unique Nash equilib-
rium: if the players used path separate paths (s, a, t) and (s, b, t) for 18 each, then each player has a better
response of taking path (s, a, b, t) for 3× 5 = 15 < 18; if one player uses (s, a, b, t) then the other has the
choice between using it for 20, or using a different path for 2×5+13 = 23. Now however, the cost for each
player at equilibrium has increased over that in the network without the dotted edge. This shows that in
a game theoretic context, "help" can leave all players worse off then before, depending on the context.

402



36.7 Auctions and mechanism design

Fair division of a cake:
Consider the following situation: a cake is to be cut into n piece for n people, where each person hopes to
maximise their piece. We want to avoid letting a third "impartial" party cutting the pieces as that party
could be bribed by one of the people to give them a disproportionately sized piece or simply make bad
cuts. We’ll therefore design a mechanism that lets people do the cutting and even the do attribution of
pieces, and will result (assuming none of the people collude) in equal piece for everyone.
We will design our mechanism recursively on the number of people n. For two people, we "divide" power
into the legislative and executive: one player cuts the cake in two pieces, the other attributes the pieces.
If the first player makes unequal halves, which we represent by f1 and f2, the fractions of cake, then
min(f1, f2) < max(f1, f2) and the second player can choose max(f1, f2) for himself. Since both players
want to maximise their fraction of cake, the second one will choose the bigger piece and the first, knowing

this, will maximise min(f1, f2) st. f1 + f2 = 1, which is attained uniquely in f1 = f2 =
1

2
.

For the general case, assume that we have a mechanism M(n−1, f) for fair division of a fraction f of cake
among n− 1 players. To design M(n, f), we chose a player (at random) to make n cuts to get n pieces of
a fraction f of cake. Then, we choose another player (at random) that will select the piece of the player
that made the cuts among the n pieces. Once the piece, say fi of cake, is chosen, we group the rest of the
pieces together and allocate them by M(n− 1, f − fi).
The player that made the cuts will get the piece min

i
(fi): indeed, by induction, M(n−1, f −fi) will result

in equally sized pieces of size
f − fi
n− 1

. This is maximised if fi = min
i
(fi) so that the player choosing the

piece will get the best result for himself in particular by choosing fi = min
i
(fi) for the player that made the

cut. Thus the player making the cut seeks to maximise min
i
(fi) st.

∑
fi = f . If he made unequal pieces,

then there must be a piece fj such that fj <
f

n
(otherwise by summing fj ⩾

f

n
, with at least one of the

inequalities strict since not all piece are equal, we’d get
∑

fi > f). So min
i
(fi) ⩽

f

n
with strict inequality

if the pieces are unequal. Thus, for his own benefit, the player making the cut will make equally sized pieces.

Introducing auctions: first and second price sealed bid 1-item auctions
We consider the following auction. One item is to be auctioned to a set of n bidders, where bidder i has
valuation (prohibitive price) vi ∈ R for the item, and places bid bi one the item. Bidders don’t know the
other bidders bids before placing theirs, and may bid only once.
Our perspective is that of the auction house that hope to receive the most from the item. In a first attempt
at designing the auction, we could give the item to the highest bidder, which we ask to pay the bid (which
they must then do). This is a "first price" auction, who’s outcome is difficult to predict.
We assume that bidder i gets value 0 from not getting the item and value vi− bi when getting the item. If

we denote by Bi = max
j ̸=i

(bi) the highest bid among the competitors of i, the i’s value is

{
0 : bi ⩽ Bi

vi − bi : bi > Bi

.

So if the bidder overbids, in the sense that vi < bi, and gets the item, he’s worse off then by not getting
the item.

Even if i doesn’t know Bi, we can study best responses to Bi. If vi ⩽ Bi, then setting bids with bi > Bi

results in value vi − bi < vi − Bi ⩽ 0, so that bids of form bi ⩽ Bi would have been better, and each of
that form is equally good. If vi > Bi, then bids bi > Bi yield value vi− bi > vi−Bi > 0, so they are better
then bids bi ⩽ Bi. However, they’re not equally good. As a bidder, we’d hope to bid as close as our closest
competitor, to get the item and simultaneously save money. In fact, any bid bi > Bi si dominated by a
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smaller bid in the same interval, which has an unattained infinimmum. Hence, there isn’t a undominated
strategy for this first price auction.

This makes first price auctions rather unpredicatble. It is sometimes preferable for a auction house to
make good predictions then to sell their objects at high prices. This is why the second price auctions, that
are more predictable and that we’ll now devellop, are popular inpractice.
In second price auctions, we let a winning bidder pay the price of his closest competitor, in the sens

that the payoff is now

{
0 : bi ⩽ Bi

vi −Bi : bi > Bi

. In that context, in the case of vi > Bi, bids bi > Bi yield

value vi − Bi > 0, so they are still better then bids bi ⩽ Bi. Now, they are also equally good. Hence,

all responses of form

{
bi ⩽ Bi : vi ⩽ Bi

bi > Bi : vi > Bi

are best responses to Bi. In fact, bidding one owns valuation

bi = vi is a best response to any Bi. Even further, if we bid bi ̸= vi, then there is a Bi, so a certain auction
scenario, in which vi ⩽ Bi and bi > Bi (in case bi > vi) or vi > Bi and bi ⩽ Bi (in case bi > vi), such

as Bi =
bi + vi

2
, in which we get negative payoff, whereas biding vi always provides positive payoff. So

betting one’s valuation is the safest response. This phenomenon has a name:

DSIC Auctions:

An auction is dominant-strategy incentive-compatible (DSIC) if betting one’s valuation is a
undominated strategy.

Sponsored search auctions and Myerson’s lemma:
We consider the following auction model. A TV channel is auctioning off the k time slots in the commercial
break between two TV series to n advertisers. We’ll model the situation with advertiser i having valuation
viaj for slot j, where vi is the valuation per relevance of of advertiser i, and aj is the relevance of the time
slot. For example, early slots may be less valuable as later ones, as spectators may leave for a toilet break
at the beginning of the advertisement.
To allocate time slots, we’ll ask the advertizers i to send bid bi. The mechanism we’ll design will be a little
complex, so that bids aren’t what advertizers will have to pay in the end. Our allocation rule is simple:
give the best slots to the highest bidder, in the sense that we sort the bids so that wlog b1 ⩾ ... ⩾ bn, give
slot j1 attaining max

j∈[k]
(aj) to bidder 1, then slot j2 attaining max

j∈[k]\j1
(aj) to bidder 2, and so on.

We’ll ask bidder i to pay pi(b1, ..., bn), so that his utility will be viaπ(i) − pi(b1, ..., bn), where π maps
the bidder to the slot we allocated them. We’ll see that with our mechanism, we won’t have pi attaining
the prohibitive value viaπ(i). The goal of our auction is to be DSIC. The question is how to set the pi so
that the auction has this property.

We’ll start by framing the problem in a more abstract context in order to devellop Myerson’s lemma.
We define mi(b1, ..., bn) to be the relevance aπ(i) of the slot attributed to i. For the case that there are
more advertisers then slots, we’ll assume that ai ⩾ 0 and we’ll add slots of value ai = 0 until we can
assume k = n. Also, we’ll renumber solts, so that we can assume a1 ⩾ ... ⩾ ak, so that bidder i gets slot
with relevance ai.
To study strategic behavior, we’re interested in t 7→ mi(b1..., t, ..., bn) = mi(t, b−i) where t is the ith ar-
gument, fixing the other bids b−i. That is, we will seek to find the best response to b−i. We still assume
b1 ⩾ ... ⩾ bn (without i), which leaves mi(t, b−i) unaffected. We can now represent mi(t, b−i) as a piece-
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wise constant increasing function of t. Indeed, mi(t, b−i) =


ai : bi ⩽ t < bi−1

a1 : t > b1

an : t ⩽ bn

with our renumbering of

bidders and slots. Our goal is for the best response, which will maximise vimi(t, b−i)− pi(t, b−i), to be vi.
We seek pi that provides this property.

We will reason along an analysis-sythesis argument. We will try to find properties of a desired pi that are
so restrictive, that we can construct a actual pi solving the problem from the conditions, aka. we seek a
set of necessary conditions, that together are sufficient.
Since the allocation m and price p are independent of the valuation v, yet we expect vimi(t, b−i)−pi(t, b−i)
to be maximised at vi, we have, for two potential valuations 0 ⩽ y < z, the identities ymi(y, b−i) −
pi(y, b−i) ⩾ ymi(z, b−i)−pi(z, b−i) (case where y is the valuation) and zmi(y, b−i)−pi(y, b−i) ⩽ zmi(z, b−i)−
pi(z, b−i) (case where z is the valuation). This provides by grouping common terms y[mi(y, b−i) −
mi(z, b−i)] ⩾ pi(y, b−i)− pi(z, b−i) ⩾ z[mi(y, b−i)−mi(z, b−i)]. In particular, we must have mi(y, b−i) ⩽
mi(z, b−i), or we’d contradict y < z, which is just the fact that m is increasing.
Now if y and z are in the same interval [bj , bj−1[ (or the extreme cases), the the values of m are equal and
the sandwich inequality implies that pi(y, b−i) = pi(z, b−i). So p must be piece-wise constant, with same
discontinuity points as m. To see what happens to p at the bj (j ̸= i), we’ll take the limit y −−−→

y<bj
bj (so

think z = bj and y ∈ [bj+1, bj [ due to our ordering) in the inequality, where we see that for the value wj

taken by pi on interval [bj , bj−1[, we have wj+1 − wj = bj(aj+1 − aj).
So if we now find one value of the piece-wise constant pi, we know the entire function since we now know
the jumps it makes at the discontinuities.

We will now turn to the synthesis part of our reasoning. We will tak one of the candidates for pi we
just discribed, and will show that the auction is DSIC for it. Let’s pick the one with pi(0, b−i) = 0. Since

we know the jumps, we now define pi(t, b−i) =


wi : bi ⩽ t < bi−1

w1 : t > b1

wn : t ⩽ bn

where wj = w1+

j∑
k=1

bk(ak+1−ak) and,

in order to satisfy wn = 0 (assuming bids are positive, so that in the end we really do get pi(0, b−i) = 0),

w1 = −
n∑

k=1

bk(ak+1 − ak), with an+1 = 0. So finally, we have form wj =
n∑

k=j+1

bk(ak − ak+1).

We will now show that for this pi, the auction is DSIC, in the sense that vimi(t, b−i) − pi(t, b−i) is
maximised for vi.

We have vimi(t, b−i)− pi(t, b−i) =


viaj +

∑n
k=j+1 bk(ak+1 − ak) : bj ⩽ t < bj−1

via1 +
∑n

k=j+1 bk(ak+1 − ak) : t > b1

vian : t ⩽ bn

.

In the case that vi ∈ [bq, bq−1[, then for j > q, we have viaj+
n∑

k=j+1

bk(ak+1−ak) ⩽ vi

aj + n∑
k=j+1

(ak+1 − ak)

,

FIX: the indices, translating Roughgarden’s "visual proof", fixing the whole proof actually.

Combinatorial auctions (single minded case):
In a combinatorial auction, n bidders seek to obtain bundles among m items. Their valuation of a bundle
S ⊆ [m] of items is vi(S), where i denotes the bidder and vi : 2

[m] → R+ is a function that may not be
linear. For example, if the auction consists of items "coffee" and "cup", then one can imagine a valuation
of 1 for the set of both items, and of 0 for just one or none of the items, as getting the coffee without the
cup or the cup without the coffee is pointless. The goal of the auction is to find a collection of at most n
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pairwise disjoint subsets of items to be given to the corresponding bidders.

Combinatorial auctions are hard to perform. We’ll focus on the case of single minded valuations that

satisfy vi(S) =

{
v∗i : S∗

i ⊆ S
0 : else

, for a desired set S∗
i and a valuation v∗i > 0. For this case, we’ll study the

auction consisting of bidders reporting (bi, Si), where bi is the bid and Si is the bundle of items bidded
for, and the auctioneer allocating either bundles Si or ∅ to bidders i, asking for price bi if the set Si is
allocated. We get a first hardness result in the following:

NP-completeness:

For the context described, finding the revenue maximising allocation is NP-complete.

Proof: We’ll make a reduction to the independent set problem, in which we ask if a graph has an indepen-
dent set (a set of vertices with no edges between them) of size at least k. We consider |V | bidders, bidder
i representing vertex i of the graph, and edges E as items. We let v∗i = 1 and S∗

i = δ(i) and consider the
instance in which bidders bid truhfully, in the sense b = v∗. When we run our black-box allocation, we
have the Si so as to maximise revenue

∑
i∈A

bi = |A| (truthful bids) where A is the set of bidders having been

allocated the set they bidded for, then the S∗
i ⊆ Si for i ∈ A must be pairwise disjoint, so that the vertices

represented by A form an independent set, as they have no common edges in their neighbourhoods. Hence,
if we can find an allocation of revenue at least k, then this corresponds to an independent set of size at
least k. The problem is also NP, as we can check disjointness and compute the revenue in polynomial time.

In the single minded context, we can investigate the following greedy allocation. We rank the bidders

in terms of their "bid per item", in the sense that
b1√
|S1|

⩾ ... ⩾
bn√
|Sn|

after possible renumbering of

bidders. Ignore the square roots for now: their only purpose will be to make nice derivations of bounds on
the quality of the allocation. We then allocate S1 to bidder 1, and then iteratively, at iteration i with set
Wi−1 of bidders having recieved the set they asked for so far (so W0 = {1}), we check if Si∩(∪j∈WiSj) = ∅,
in which case we can and do give i his desired bundle Si. We the set Wi = Wi−1 ∪ i. Otherwise, we pass
to the next bidder, letting Wi =Wi−1.

In the single minded context, we can investigate the following greedy allocation. We rank the bidders

in terms of their "bid per item", in the sense that
b1√
|S1|

⩾ ... ⩾
bn√
|Sn|

after possible renumbering of

bidders. Ignore the square roots for now: their only purpose will be to make nice derivations of bounds on
the quality of the allocation. We then allocate S1 to bidder 1, and then iteratively, at iteration i with set
Wi−1 of bidders having recieved the set they asked for so far (so W0 = {1}), we check if Si∩(∪j∈WiSj) = ∅,
in which case we can and do give i his desired bundle Si. We the set Wi = Wi−1 ∪ i. Otherwise, we pass
to the next bidder, letting Wi =Wi−1.

Inspired by the second-price auction concept, we’ll ask a winner i ∈ Wn to pay price pi =
bj√
|Sj |

√
|Si|,

where j > i is the smallest index such that Sk ∩ Sj = ∅ for all k < j, k ̸= i, but Si ∩ Sj ̸= ∅, or pi = 0 if
such an index doesn’t exist. For the i /∈Wn that where allocated ∅, we ask to pay pi = 0.

First, we check that taking part in the auction can only yield positive utility under our rules and certain
assumptions. Assuming the reasonable (and necessary for the algorithm to work) S∗

i ̸= ∅, so that vi(∅) = 0,
we see that for i /∈ Wn, bidder i has utility vi(∅) − pi = 0 − 0 = 0 ⩾ 0. If i ∈ Wn, then if bi ⩽ v∗i and
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S∗
i ⊆ Si, then the utility is vi(Si)−

bj√
|Sj |

√
|Si| ⩾ v∗i − bi ⩾ 0, since

bj√
|Sj |

√
|Si| ⩽ bi as j > i. Bidding

for a set that doesn’t contain S∗
i will yield utility 0− bj√

|Sj |

√
|Si| ⩽ 0, assuming positive bids, and bidding

higher then ones valuation v∗i may also result in loss.

We now investigate best responses in this context. We’ll first show that given the other bidders bids,
bidder i is better off (in the large sense) bidding (v∗i , S

∗
i ) then (bi, Si), for any Si and bi. We disjoin cases.

If Si doesn’t contain S∗
i , the utility of bidding (bi, Si) is either 0 if i /∈Wn, or 0− bj√

|Sj |

√
|Si| ⩽ 0 if i ∈Wn.

By bidding (v∗i , S
∗
i ) instead, two outcomes can occur. If i /∈ Wn, utility is still 0 and in particular better

then the outcomes of bidding (bi, Si). If i ∈ Wn, then the utility is vi (S∗
i ) −

bj√
|Sj |

√
|S∗

i | ⩾ v∗i − v∗i = 0

since i ∈Wn, so that
bj√
|Sj |

√
|S∗

i | ⩽ v∗i must hold. So in this case (v∗i , S
∗
i ) is better. In the cases that the

index j is inexistent and the price is set to 0, the inequalities we derived still hold.

Next, if S∗
i ⊆ Si, things get interesting. The utility of bidding (bi, Si) is either 0 if i /∈ Wn, or

v∗i −
bj√
|Sj |

√
|Si| if i ∈ Wn. We saw that bidding (v∗i , S

∗
i ) yields positive utility in all cases, so that

the utility of bidding (bi, Si) for i /∈Wn is dominated for this case.

In the case that i ∈ Wn when bidding (bi, Si), then by bidding (bi, S
∗
i ), we’d also end up winning in

the sense that i ∈Wn. First, i is possibly considered early on in the algorithm, as
bi√
|S∗

j |
⩾

bi√
|Sj |

. Now,

since if at iteration i, we had Si ∩ (∪j∈WiSj) = ∅, then also S∗
i ∩ (∪j∈WiSj) = ∅ as S∗

i ⊆ Si, and for the
pervious Wk<i too, so that i is selected in this case too.

We’ll now show that bidding (bi, S
∗
i ) would have been better. We can directly deduce this from v∗i −

bj√
|Sj |

√
|Si| ⩽ v∗i −

bj√
|Sj |

√
|S∗

i | (by positivity and S∗
i ⊆ Si), as it’s unclear if bidding (bi, S

∗
i ) yields the

same index j selected by our algorithm. This happens to be true, and we’ll prove it. Assume for contra-
diction that there is an index r with i < r < j such that Sk ∩Sr = ∅ for all k < r, k ̸= i, but S∗

i ∩Sr ̸= ∅.
Then in particular i < r and Sk ∩ Sr = ∅ for all k < r, k ̸= i, but Si ∩ Sr ̸= ∅, since (S∗

i ∩ Sr) ⊆ (Si ∩ Sr),
as S∗

i ⊆ Si. So r would contradict the minimality of j since r < j and it has the properties defining j.

Therefore, if r is the index selected for iteration i when we bet (bi, S
∗
i ), we must have r ⩾ j, or r non-

existent, in which case the price is 0 and the utility is better. In case r ⩾ j, we have
bi√
|S∗

i |
⩾

bi√
|Si|

⩾

bj√
|Sj |

⩾
br√
|Sr|

, so that v∗i −
br√
|Sr|

√
|S∗

i | ⩾ v∗i −
bj√
|Sj |

√
|Si|, which means that bidding (bi, S

∗
i ) is better.

Finally, we’ll show that bidding (v∗i , S
∗
i ) is better then bidding (bi, S

∗
i ). As we metioned early on, we only

have to consider the case here we bid (bi, S
∗
i ) and win, so that i ∈ Wn. If bi ⩽ v∗i , then

v∗i√
|S∗

i |
⩾

bi√
|S∗

i |
and i is considered earlier on in the algorithm. Since the bundle S∗

i stays the same, i will be added to
the winner set in both cases at its iteration, as its bundle shares no items with any predecessing bundle.

So the the utility of (v∗i , S
∗
i ) is v∗i −

br√
|Sr|

√
|S∗

i |, where r is the selected index. One can show by similar
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arguments to our previous ones that r = j where j was the index for (bi, S∗
i ), this time even more directly,

as the bundle stays the same. Hence, in the case that bi ⩽ v∗i , bidding (v∗i , S
∗
i ) instead of (bi, S∗

i ) yields
same utility, hece the former is better in the large sense.

And you’ll be as pleased to hear as I was, that after this long case disjunction, the final case bi > v∗i
may not hold. In this case, the "bid per item" ratio decreases, and it’s now possible that i isn’t selected
anymore, as a bidder that is now a predecessor of i may have had, for example, the same desired bundle
as i, and in general a bundle with an item common to that of i, preventing i from being taken afterwards.

The resulting utility is 0. In parallel, it’s still possible that v∗i −
bj√
|Sj |

√
|S∗

i | > 0, depending on bj . In

such a case, bidding (bi, S
∗
i ) would have been better then (v∗i , S

∗
i ).

FIX: if it can be fixed... might want to read the actual paper cause the proof of the AGT textbook page
274 is trash.

We have seen that in this type of auction, truthful bidding is an undominated strategy.
What can we say about the welfare of the auction ?

Quality ratio of the greedy allocation:

For an optimal allocation maxiximising welfare OPT =
∑
i∈A

v∗i , where A is the set of bidders re-

cieving aset containing their desired set, we have OPT ⩽
√
m
∑
i∈Wn

v∗i .

Proof: We consider for i ∈ Wn the sets Ai = {j ∈ A : j ⩾ i, Sj ∩ Si ̸= ∅}, consisting of the elemts of
A greater then i that won’t be taken by the greedy algorithm, as they appear after i and their bundles
share items. We have A ⊆ (∪i∈WnAi), since for the i ∈ A∩Wn, we have i ∈ Ai and for the j ∈ A\Wn, the
algorithm must have skipt them due to sharing an item with the bundle of some i < j ofWn, so that j ∈ Ai.

We’ll soon show that
∑
j∈Ai

v∗j ⩽
√
mv∗i for i ∈ Wn. Then

∑
i∈A

v∗i ⩽
∑

j∈∪i∈WnAi

⩽
∑
i∈Wn

∑
j∈Ai

v∗j by inclu-

sion and multiple accounting. So this will provide
∑
i∈A

v∗i ⩽
√
m
∑
i∈Wn

v∗i , the desired result.

By the ordering, we have
v∗j√
|S∗

j |
⩽

v∗i√
|S∗

i |
for all j ∈ Ai, so that

∑
j∈Ai

v∗j ⩽
v∗i√
|S∗

i |

∑
j∈Ai

√
|S∗

j |. Now

the square roots will come into play. We can bound this further with Cauchy-Schwarz on
∑
j∈Ai

√
|S∗

j | see

as a dot-product of (1, ..., 1) with
(√
|S∗

j |, ...
)

to get
∑
j∈Ai

√
|S∗

j | ⩽

√∑
j∈Ai

|S∗
j |

√|Ai|. Since the S∗
j

for j ∈ Ai ⊆ A form disjoint subsets of [m], we have bound
√∑

j∈Ai

|S∗
j | ⩽

√
m. Next, note that for each

j ∈ Ai, we have Sj ∩ Si ̸= ∅ so we can account for one element of Si per j. Since the Sj for j ∈ Ai ⊆ A
form disjoint subsets, we’ll never account the same element of Si this way. So |Ai| ⩽ |Si|. We can fnially

put the bounds together to get
∑
j∈Ai

v∗j ⩽
v∗i√
|S∗

i |

∑
j∈Ai

√
|S∗

j | ⩽
v∗i√
|S∗

i |
√
m
√
|S∗

i | =
√
mv∗i .
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36.8 Markets

Microeconomics Reny, chap 4 and 5
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36.9 Solutions

Ex.CRTC:
For a tree, one cop is enough, as the cop can move towards the component that the robber is in, when
deleting the cop-vertex temporarily. The robber can’t leave this component without passing through the
cop-vertex, thereby getting caught. The size of the component the robber is in will decrease by at least 1
at each turn of the cop, so that after finitely many turns, the cop catches the robber.
On a cycle of size ⩾ 4, the robber can start on a vertex not in the neighbourhood of the cop and move
in the same direction as the cop at each turn to maintain the distance between them, and evade the cop
indefinitely.
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