
Finite Dynamical Systems
Yves Jäckle

2023

1

Contents

1 Finite Dynamical Systems 3
1.1 Basics of FDS . 3
1.2 Applications in Biology . 6
1.3 Dynamics from the interaction graph . 7

2 Boolean Networks 9
2.1 Interaction graphs and BN . 9
2.2 Algorithms for finding attractors of BN . 12

3 Sequential Dynamical Systems 13

4 Polynomial Dynamical Systems 14
4.1 Basics on PDS . 14
4.2 PDS and interaction graphs . 17
4.3 Reverse engineering and data fitting . 18
4.4 Linear and affine PDS . 19
4.5 Monomial PDS . 20

5 Cellular automata 21
5.1 Basics of CA . 21
5.2 Attractors . 24
5.3 Greenberg-Hastings automaton . 25

6 Data 26
6.1 References . 26

2

1 Finite Dynamical Systems

1.1 Basics of FDS

Finite Dynamical Systems:

A finite dynamical system (FDS) is described by its state space X, which is a finite set,
and its transition function f : X → X.

In a synchronous FDS, the dynamics is described by the images fn(X) (image of the n-th composite of
f). The trajectory of x ∈ X is the sequence (fn(x))n∈N. We associate a synchronous transition (di-)
graph STG(f) to such a system, who’s vertices are V = X and who’s arc are A = {(x, y) : y = f(x)}.
This digraph may therefore contain loops, corresponding to the case f(x) = x.

In many cases, one deals with X =

[d]∏
i=1

Xi for finite sets Xi. A very common such type of systems are

those for which Xi = {0, 1}, which are called Boolean networks.

The case where X = {0, 1}L where L ⊊ Zd can represent a certain type of cellular automata. We
can picture these as a part of a grid/lattice in d-space, in which grid-cells may be in one of two states.
The transitions fi for i ∈ L may then depend on a neighbourhood of i in L, for example the transitions
can have expression fi(x) = g(xB1(x,1)) where B1(x, 1) = {y ∈ L : ∥x− y∥1 ⩽ 1}.

There is a different type of update for FDS:

Asynchronous FDS:

In a asynchronous FDS, the state space is of form X =

[d]∏
i=1

Xi for finite sets Xi, and we’re

interested in component-wise updates. By writing x = (x1, ..., xd) with xi ∈ Xi, the transition functions
are f̃i(x) = (x1, ..., xi−1, fi(x), xi+1, ..., xd). The dynamics is then described by the asynchronous
transition (di-)graph ATG(f): its vertices are V = X and its arcs are A =

{
(x, y) : y = f̃i(x)

}
.

Such a graph may have loops, and even loops as multi-edges.

One can think of ATG(f) as representing all the transitions that could occur, without information on
which component will get updated in what order.

Examples:
We consider the boolean network with state space X = {0, 1}2 and transition function f where f1 is bit-
conjunction "and" and f2 is bit-exlcuive-disjunction "xor". On the left of the following figure, we depicted
STG(f), and on the right, we have ATG(f).

3

00 01

1110

00 01

1110

One can study an asynchronous FDS with additional information on the order in which the transitions
occur:

Sequential dynamical system:

A sequential dynamical system (SDS), is a synchronous FDS based on an update order/schedule
described by a permutation π of [|X|]. The transition function of the SDS is Fπ = f̃π(|X|) ◦ ... ◦ f̃π(1). Note
that in general, Fπ ̸= f .

As with normal dynamical systems, we’re interested in the long term behaviour of the system.

Fixed points and attractors:

For an FDS, we say that a state x ∈ X is periodic if there is a iterate fn with n ⩾ 1 so that
fn(x) = x. The smallest such n is the period of x. Points of period 1 are called fixed points or steady
states. we denote their set by Fix(f).

A set of states A is an attractor of the FDS if in the respective transition graph G, there are no
arcs from a vertex of A to a vertex of X\A, and A is inclusion-minimal for this property.

Characterisation of attractors in synchronous FDS:

There are always attractors of a synchronous FDS and they are made of periodic points and are
precisely the cycles (possibly loops) of its transition graph STG(f).

Proof: If x is on a cycle of STG(f), then (fn(x)) runs over the cycle, and x is periodic (with period the
length of the cycle). The arcs of the cycle connect only cycle-vertices and this property fails if we remove
at least one vertex of the cycle (as the arc leading to one of those vertices no leads outside of A). Therefore
cycles, are attractors.

4

Conversely, if A is an attractor of a synchronous FDS, then for all x ∈ A, f(x) ∈ A. As A is finite, there
must be a repetition in the sequence (fn(x)) after a finite number of iterates. We consider the first such
repetition at states fa(x) = f b(x): this means that y := fa(x) is on a cycle of STG(f). If y ̸= x, then
A wouldn’t be an attractor, as the cycle on y that is its subset has the attractor property, so that A
wouldn’t be inclusion-minimal. So A contains a cycle in x, implying that x is periodic, and since A is
inclusion-minimal, it must in fact be that cycle.
Finally, for A = X, the beginning of the argument implies that a attractor must exist.

Remark: We can use indicator vector x ∈ {0, 1}|X| to represent the states. Transitions can then be

handled with matrix Mf who’se entries are my,x =

{
1 : y = f(x)

0 : else
, so that Mfx indicates the image

of the state that x indicates, under f . One can then study the dynamics with linear algebra methods,
such as the Jordan normal form, or simply Gaussian elimination, as one can find fixed points by solving
Mfx = x. However, when |X| is large this may become a computationally difficult task. Also, computing
Mf implicitly requires computing the transition graph, so that solving Mfx = x is a inefficient way of
finding fixed points.
Note that this method links FDS to the field of Markov chains, as we’re dealing with a Markov chain with
deterministic transition probabilities.

5

1.2 Applications in Biology

6

1.3 Dynamics from the interaction graph

In biological applications, the transition function f may be unknown. However, certain experiments can

provide information on f . One such information is dependency: in the case of a state space X =
d∏

i=1

Xi,

we say that dimension (/criteria/parameter) j ∈ [d] is dependent on i ∈ [d] if we can find states x, y ∈ X
that differ only in i (in the sense that xk = yk for k ∈ [d]\i and xi ̸= yi), so that fj(x) ̸= fj(y).
Independence therefore means that we can change parameter i of the biological system and expect no
changes to parameter j in the next step of the biological system. Dependence means that a change
parameter i may (it doesn’t have to) yield a change to parameter j in the next step of the biological
system. We can visualize this with:

Interaction graph of an FDS:

The interaction (di-)graph IG(f) of an FDS on state space X =
d∏

i=1

Xi is a digraph with

vertex set V = [d] and arcs A = {(i, j) : ∃x, y ∈ X,xk = yk for k ∈ [d]\i and xi ̸= yi, and fj(x) ̸= fj(y)},
meaning that we add an arc if j depends on i. This graph may have loops.

Vocabulary: in the literature, another name for the interaction graph is the dependency graph, and it
appears under different definitions, which may or not be equivalent.

As one can obtain an interaction graph from experiments, we’ll study what can be said about the FDS
from this graph only, ignoring the true transitions function f .

This task can seem rather difficult, as there may be many different FDS with different behaviours that
have the same interaction graph. For example, we can consider all the Boolean networks who’s interaction
graph is a cycle Cn. If we peak ahead in these notes to the characterisation of the interaction graphs for
PDS, we’ll see that this means that the transition functions have form fi(xi−1 mod n) and aren’t constant,
so that the only possible transitions are fi(xi−1 mod n) = xi−1 mod n or fi(xi−1 mod n) = 1 − xi−1 mod n.
This represents one of two choices per i, so that 2n transitions f exist that have Cn as interaction graph.

However, one can still make general qualitative statements based on the interaction graph:

Robert’s Theorem:

For an FDS with transition function f and state space X =
d∏

i=1

Xi, then the interaction graph

IG(f) is acyclic (also, loopless) ⇒ fn is the same constant function for all n ⩾ d. In such a case, f has a
unique fixed point and it’s the only attractor.

Proof: We’ll prove this by induction on d. The case d = 1 corresponds to a constant f = f1 as no changes
to x1 affect f .
For dimension d, the acyclic IG(f) must have a source: a vertex i to which no arc points (consider one of
the endpoints of a largest dipath in the graph). This means that fi is a constant ki, as it takes the same
value for all states. To see this, note that we can apply the notion of independence to any sequence of
states x = c0, c1, ..., cn−1, cn = y where cj+1 differs from cj only by coordinate j + 1, where cj,j+1 = xj+1

7

and cj+1,j+1 = yj+1, to see that fi(x) = fi(y).
This now implies that in the sequence of states x(n) = fn

(
x(0)

)
, we have x

(n)
i = ki for n ⩾ 1. Next, by

defining g(x[d]\i) = f(x1, ..., ki, ..., xd), we see that for n ⩾ 2, we have x(n) = fn
(
x(0)

)
= gn−1

(
x
(1)
[d]\i

)
.

If we then restrain the image of g to the dimensions of [d]\i, knowing that gi = fi = ki, then g is the
transition function of a FDS on a space of dimension d − 1. the interaction graph of g is a subgraph of
that of f , so that it remains acyclic. We can then use the induction hypothesis that gn is constant for
all n ⩾ d− 1, but then fn

(
x(0)

)
= gn−1

(
x
(1)
[d]\i

)
is constant for all n ⩾ d, which is the conclusion of the

induction step. (A. Richard’s notes may have a cleaner version of this proof).
Finally we show that in such a case the constant k = fd is a fixed point, and it’s the only attractor of
f . Since fd+1(k) = k and fd+1(k) = f

(
fd(k)

)
= f(k), we see that k is a fixed point. It’s the only fixed

point, as for any other fixed points q, q = fd(q) = k. To see that cyclic attractors are impossible, note
that the cycle would get stuck at k from d iterations onward.

We’ll see later on that there is a pseudo-converse to Roberts theorem, in the sense that for graphs with a
special property which includes having a cycle, one can build Boolean networks the have none or multiple
fixed points that have this graph as interaction graph.

8

2 Boolean Networks

2.1 Interaction graphs and BN

Here is the pseudo-converse to Roberts theorem we promised:

Small Aracena-Richard-Salinas Theorem:

For a digraph G on vertices [d] that has the property |δ−(j)| ⩾ 1 for all i ∈ V and posses a
cycle, there is a BN that has no fixed points, and one that has at least two fixed points, so that both have
G as interaction graph.

Proof: First, we build a BN that has at least 2 fixed points. We’ll study the BN given by fj(x) =
∨

i∈δ−(j)

xi

which has already the fixed points 0 and 1. Note that the interaction graph of this BN is indeed the one
we assumed: j does depend on i when i ∈ δ−(j), as one can see by computing the images of 0 and ei
under fj and noting that they differ. Other dependecies don’t exist, as the variables don’t appear in the
functions expression.
If we only have the property that the graph has a cycle and we set the disjunction over an empty set to
be 0, then 0 might not be a fixed point anymore if the graph has a source.
But we can still obtain a fixed point in that case ! Indeed, we only need to set xi = 0 when i can not be
reached from the cycle C (this includes the potential sources), and xi = 1 when i can be reached from the
cycle C. This will produce a dicut in the graph, as there may be no arcs from a vertex reachable from C to
one that isn’t. The vertices reachable from C, j, all have a vertex i of the same partition as predecessor:
this is true for the vertices on the cycle (take their predecessor on the cycle), and then for those at the end
of a path starting from a cycle vertex. Since the variable corresponding to that predecessor i has value 1,
fj(x) = 1 = xj .
The other vertices j can have no predecessor (if any) reachable from C, so that all their predecessors i (if
any) have value 1, so that fj(x) = 0 = xj . We therefore get a fixed point which is different from 1 when
there’s at least one source.

We’ll now build the BN that has no fixed points. Our construction will have the desired property if
a certain set underlying it is an FVS:

Feedback vertex set:

A feedback vertex set (FVS) I in a graph (V,A) is a set of vertices I so that each cycle of
(V,A) contains a vertex of I. In particular, the induced graph on V \I is acyclic. One can require that I
be inclusion minimal for this property in the definition, which we do.

When the graph has a cycle C, FVSs exist and aren’t empty, as they must contain an element of C.
We’ll study the BN given by fj(x) =

∨
i∈δ−(j)

xi for j ∈ F and fj(x) =
∧

i∈δ−(j)

xi for j /∈ F and see that it

has no fixed point when F is a FVS of the graph.
Note again that the interaction graph of this BN is indeed the one we assumed: j does depend on i when
i ∈ δ−(j), as one can see by computing the images of 1 and 1 − ei under fj and noting that they differ.
Other dependencies don’t exist, as the variables don’t appear in the functions expression.
We’ll show this by contradiction: assume that we have a fixed point x = f(x). We now disjoin cases on

9

whether there is an i ∈ F so that xi = 0 or not. In the first case, we consider a cycle C of the graph so
that F ∩ C = {i}: it exists as otherwise, all cycles of the graph passing through i would pass through
another point of F , so that F\i has the FVS property, contradicting the inclusion-minimality of F . If
we then follow the vertices along the cycle, starting from the successor j to i, since j /∈ F , we compute
fj(x) = 0 due to xi = 0 and i ∈ δ−(j). For the next vertices k /∈ F , we compute fk(x) = 0 due to xj = 0
and j ∈ δ−(k), until we arrive back to i. There, we compute fi(x) = 1 due to it’s predecessor k on the
cycle having xk = 0 and i ∈ F . This is a contradiction to the fixed point property fi(x) = xi.
In the second case of the case disjunction, all i ∈ F verify xi = 1. Then with fi(x) = xi and i ∈ F , we find
that there must be a j ∈ δ−(i) so that xj = 0, so that in particular j /∈ F in this case. Now fj(x) = xj
and j /∈ F imply that there must exist a k ∈ δ−(j) so that that xk = 0, so that in particular k /∈ F . We
can keep reiterating this argument, backtracking a path of vertices in V \F for which xj = 0 in the process.
Due to finiteness, the path will eventually loop: we will then have found a cycle in V \F contradicting the
FVS property of F .
So all cases for fixed points lead to contradiction, so that none may exist.

In fact, the number of fixed points of BN with a given interaction graph is a topic of interest:

Fixed points under interaction graph constraints:

We define bounds on the number of fixed points of a BN with interaction graph G by:
min
BN

(G) = min(|Fix(f)| : IG(f) = G, f a BN) ⩾ 0 and

max
BN

(G) = max(|Fix(f)| : IG(f) = G, f a BN) ⩽ 2|V |.

Of course, min
BN

(G) ⩽ max
BN

(G).

We mention bounds on these quantities based on the following graph properties:

Relevant graph properties:

The packing number ν(G) of G is the maximum size of a family of vertex-disjoint cycles of
G.

The transversal number τ(G) of G, defined as the minimum size of a FVS of G.

INTERNAL NOTE: FIND ALGORITHMS FOR COMPUTING THEM
With them, one can bound the maximum number of fixed points:

Aracena-Richard-Salinas Theorem:

max
BN

(G) ⩾ ν(G) + 1

Feedback bound Theorem (Riis-Aracena):

10

max
BN

(G) ⩽ 2τ(G)

11

2.2 Algorithms for finding attractors of BN

Complexity for fixed points:

Finding a/the fixed point(/s) of a BN is NP-complete.

Proof: We reduce a SAT instance to the task of finding a fixed point of a particular BN.
For a SAT instance on variables x1, ..., xn and clauses C1, ..., Cm, we build a BN on {0, 1}n+m where we
keep variables x1, ..., xn associate a variable yi to clause Ci. The key remark is that in a Boolean equation
of form z = E(...) ∨ z, we must have z = 1, so that E(...) = 1 as well. Since we want the clauses to
be true, we can let E(...) = Ci and by letting z be a variable in our BN, z = E(...) ∨ z can be related
to fixed points by defining transition fi(x1, ..., xn, y1, ..., ym) = Ci(x1, ..., xn) ∨ yi where i indexes clauses.
By setting transitions fj(x1, ..., xn) = xj for j indexing variables, fixed points of the BN solve xj = xj
and yi = Ci(x1, ..., xn)∨ yi, the second part implying that the x-variables of that point satisfy all clauses.
Conversely, any assignment of x-variables satisfying the clauses can be extended to a fixed point of the BN
by setting the remaining y-variables to 1. Since the number of variables and functions of the BN we built
is polynomial in the input size of SAT, this is a polynomial time reduction to an NP-complete problem.
Finally, one can verify that a given point is a fixed point by computing its image under f , so that we
obtain NP-completeness of the problem.

Remark: If the fi are Boolean functions, one can reduce the problem of finding fixed points to a SAT.
First, we observe that xi = fi(x) is equivalent to 1 = fi(x) xor xi. Next, one first expresses the Boolean
functions fi(x) xor xi in their conjunctive normal form (CNF) CNFi. This step is where the reduction
may fail to be polynomial, as we could obtain a CNF with exponentially clauses. We then see that all
equations are satisfied when the CNF CNF1 ∧ ... ∧CNFn is satisfied, that is to say when all clauses are
satisfied, which is a SAT instance.
Seeing as it’s relatively easy to pass from searching fixed points to solving an SAT instance, we’ll briefly
discuss how SAT can be solved with integer programming, as it’s easier to find IP-solvers then to find
implementations of efficient exponential exact algorithms for SAT.
We can associate indicator variables to disjunctions and conjunctions as follows.

If z indicates disjuction z =
∨
i∈I

xi, then we can represent it by constraints

z ⩾ xi

z ⩽
∑

i∈I xi

z ∈ {0, 1}
and if it

indicates conjunction z =
∧
i∈I

xi, then we can represent it by

z ⩽ xi

z ⩾ 1− |I|+
∑

i∈I xi

z ∈ {0, 1}
.

Finally, negation can be expressed as xi = 1 − xi, so that by nesting these variables, we’ll end up with

variables zj indicating clause j of m clauses of the SAT instance. We can then solve the IP max

 m∑
j=1

zj

over these constraints. If the optimum returned by the IP solver is m, then the corresponding feasible
solutions x-variables correspond to a satisfying assignment, and otherwise, no satisfying assignment exists.

12

3 Sequential Dynamical Systems

"An introduction to Sequential Dynamical Systems" by Henning Mortveit and Christian Reidys

13

4 Polynomial Dynamical Systems

4.1 Basics on PDS

A particular type of FDS are:

Polynomial Dynamical Systems:

A polynomial dynamical systems (PDS) is a synchronous FDS for which the state space is
Kd where K is a finite field and for the transition function f , the components fi are a polynomials of
K[X].

These FDS are of interest from a computational viewpoint. For example, finding their fixed points is
equivalent to solving a system of polynomial equations over the field.

Indeed, if x ∈ Kd is a fixed point, this mean that it solves

f1(x)− x1 = 0

...

fd(x)− xd = 0

over Kd.

If the state space is large, computing the transition graph becomes extremely time consuming compared
to the task of solving systems of polynomial equations. This the strength of PDS. Therefore, we’d like to
know when we can use them:

Representing FDS as PDS:

An FDS can be represented by a PDS if it’s state space has the size pq where p is a prime.

We remark that this is the case for Boolean networks. There reason for the constraint on the size is that
the only finite fields that exist have size (/order) of this form. They can be represented by (Z/pZ)[X]/⟨P ⟩
for some monic irreductible P over Z/pZ.
As a reminder, Z/pZ are the integers modulo p and (Z/pZ)[X]/⟨P ⟩ are the polynomials over Z/pZ modulo
P . As we’ll consider polynomials over the field (Z/pZ)[X]/⟨P ⟩, it’s convenient to not think of its elements

as polynomials, but as "symbolic expressions" of form
deg(P)−1∑

i=0

ciX
i for an indeterminate X.

We can see by this expression that the field has pdeg(P) elements. So the Kd we hope to represent the state
space with has size pdeg(P).d, hence the necessity of the condition. To be more precise, it can be shown
that one can find a desired polynomial of arbitrary degree, so that all prime-power-sized state spaces are
candidates
FLESH OUT THE ACTUAL ALGEBRA ON THIS PREVIOUS PART.

So we know that one can represent the state space as Kd where K is a finite field, when it’s size is
the power of a prime. How do we represent the transition function ?

Lagrange interpolation:

For any map fi : Kd → K, there is a polynomial Pfi of degree at most d(|K| − 1) that coincides
with fi, so that the transition function can be represented by (Pf1 , ..., Pfd).

14

Proof: We’ll construct such a polynomial recursively (inductively), depending on the number of variables

d. When d = 1, we can use 1-dimensional Lagrange interpolation and obtain Pg(X) =
∑
x∈K

g(x)

∏
y∈K\x(X − y)∏
y∈K\x(x− y)

which has dregee |K| − 1 at most.
For the step, we use the idea of factorisation into the coefficients. We consider the |K| functions
y 7→ g(y1, ..., yd, xd+1), indexed by xd+1 ranging over K. By induction, we know that there are polynomials
Pxd+1

(y1, ..., yd) interpolating g(y1, ..., yd, xd+1).

We can then define Pg(y1, ..., yd, yd+1) =
∑

xd+1∈K
Pxd+1

(y1, ..., yd)

∏
z∈K\xd+1

(yd+1 − z)∏
z∈K\xd+1

(xd+1 − z)
.

It interpolates g, as in (x1, ..., xd, xd+1), the only term remaining is Pxd+1
(x1, ..., xd), which interpolated

y 7→ g(y1, ..., yd, xd+1) by induction and has value g(x1, ..., xd, xd+1). Finally, the degree of Pg has increased
by at most |K| − 1, so that it’s degree is (d+ 1)(|K| − 1) at most.

We still have to explain how one obtains fi from f : X → X. If σ : X → Kd is the one-to-one map
used for representation. then fi =

(
σ ◦ f ◦ σ−1

)
i
.

To conclude with the representation theorem, we still have to use the isomorphism ϕ : Kd → F from the
product of fields to the field F , mapping coordinate to expression (polynomial) coefficients. The transition
function is then ϕ ◦ (Pf1 , ..., Pfd) ◦ ϕ

−1.

If X =
d∏

i=1

Xi where all |Xi| are the same prime and f is given by it’s coordinate functions, then it

seems better adapted to the problem to consider the representation in Kd instead of that of F .
For Boolean networks, for example, we keep the represent {0, 1}d by rather then by Zd

2 expressions of form
d−1∑
i=0

cib
i where ci ∈ Z2 and bd = b. To find a polynomial transition function corresponding to the Boolean

one, one can use a nested application of tricks, some of which we present:

• Negation: represent ¬x as 1− x.

• Conjunction: represent x ∧ y as xy.

• Disjunction: represent x ∨ y as 1− (1− x)(1− y) = x+ y − xy.

• Implication: represent x ⇒ y as 1− x(1− y) = 1 + xy − x.

For example f(x, y) = (x ∧ ¬y, x) will be represented by fP (x, y) = (x(1− y), x). The transition function
on the field F associated to the Boolean network would have been c0 + bc1 7→ c0(1− c1) + bc0.

Remark: For the finite field F and the FDS given by f : F → F , a theoretically interesting result
is that f can be represented by a polynomial. Indeed, the Lagrange polynomial interpolating f(F) does
the job.

Remark: One can "extend" the representation theorem to FDS with arbitrary state space size by adding
artificial states to it. By considering a state space Y = X ∪ Z of size a prime power greater then |X|,
with artificial sates Z (so Z ∩X ̸= 0), and extending the transition function f : X → X to F : Y → Y by
setting F |X = f and F |Z = idZ , we get a FDS that can be represented by a PDS. Then, the study of the
FDS given by f can be acheived through that of the PDS representataive of F , followed by the exclusion
of results involving Z.

15

Note that the representation theorem is only for theoretical purposes. Interpolation requires us to know
transition function and to compute all it’s values, that is to say that we have to compute the entire
transition graph of the FDS.

16

4.2 PDS and interaction graphs

Is there an algebraic way of describing the interaction graph of a PDS ?
IS THERE AN ACTUAL ALEGRAIC WAY OF TESTING DEPENDENCE ?

Characterisation of the interaction graph of a PDS:

We call the support of f the inclusion minimal set supp(fj) ⊆ [d] so that fj coincides with a
polynomial with variables indexed by supp(fj). The arcs of the interaction graph of a PDS are
A = {(i, j) : i ∈ supp(fj)}.

Proof: We’ll show that i /∈ supp(fj) ⇔ ∀x, y ∈ Kd, xk = yk for k ∈ [d]\i and xi ̸= yi imply fj(x) = fj(y).
Contraposition then yields the equivalence of the notions of dependence.
If i /∈ supp(fj), fj ’s value stays the same if only the i-th variable is changed, as can be seen from evaluations
of its polynomial equivalent in the variables indexed by supp(fj). Conversely, if ∀x, y ∈ Kd, xk = yk for
k ∈ [d]\i and xi ̸= yi imply fj(x) = fj(y), then we can consider the Lagrange polynomial on variables
indexed by [d]\i interpolating the points of Kd−1 with values fj(x): this polynomial will coincide with f ,
so that supp(fj) ⊆ [d]\i, meaning that i /∈ supp(fj).

Note that the method used in the proof to tell if j depends on i is computationally inefficient: using
Lagrange interpolation to check if i ∈ supp(fj) required computing all values of fj , which already provides
an answer to the question of dependency.
Note also that the condition i ∈ supp(fj) can in all generality not be read off from fj . For example, for
fj(xi) = x

|K|
i − xi, j remains independent of i, as fj coincides with the zero polynomial over the field K.

What kind of interaction graphs can we expect to see from PDS ?

Possibilities of the interaction graph of a PDS:

All digraphs on d vertices may be interactions graph of a PDS.

Proof: For a graph ([d], A), we consider the PDS over {0, 1}d with transition functions fj(x) =
∑

i∈δ−(j)

xi,

where δ−(j) denotes the in-neighbourhood of i (recall that the sum over an empty set is taken to be 0).
When (i, j) ∈ A, then the points 0 and ei differ on i only and have different inmages under fj so that j
depends on i. Otherwise, (i, j) /∈ A so that i /∈ supp(fj), and j is independent of i. So ([d], A) really is
the interaction graph of f .

Note we could have used a different field then Z/2Z in the proof and got the same result. Even when the
field is fixed, their may be multiple functions with the same interaction graph.

17

4.3 Reverse engineering and data fitting

18

4.4 Linear and affine PDS

Linear and affine PDS:

A linear PDS is given by a trasition f : Kd → Kd for a finite field K of form f(x) = Mx
where M ∈ Kd×d is a matrix with coefficients in K.
An affine PDS is given by a trasition f : Kd → Kd for a finite field K of form f(x) = Ax + b where
A ∈ Kd×d and b ∈ Kd.

Under certain conditions, on can use strong tools from linear algebra to describe linear and affine PDS
completely. Indeed, we can determine the characteristic polynomial of M or A, use a factorisation
algorithm to check if it factors into linear terms, in which case we can use the Jordan canonical/normal
form of M or A.
The powers Jordan normal form J can be expressed as formulas of the power. This way, fn(x) = Mnx =

P−1JnPx and fn(x) = P−1JnPx+ P−1

(
n−1∑
i=0

J i

)
Pb can be expressed as explicit formulas in n. We can

then find the fixed points and cycles of the PDS by solving fn(x) = x for n = 1, ..., |K|d with linear algebra.
For this approach to be efficient, the time of finding the Jordan form has to outpeform matric multiplication.

19

4.5 Monomial PDS

Monomial PDS:

A monomial PDS is given by a trasition f : Kd → Kd for a finite field K of form fi(x) = cix
ai for

i ∈ [d], where ai ∈ Nd and ci ∈ K, using multiindex notation.

If one of the ci = 0, then in the first iteration x
(1)
i = 0 and in the second, for all j for which aji ⩾ 1, we

have x
(2)
i = 0, and so on. In fact, after a finite number of steps, all xj for j in the connected component

of the interaction/dependency graph of i will stay at value 0. So we’ll assume that ci ̸= 0, or focus on the
sub-PDS for which this is the case.

We can reduce the study of monomial PDS to that of affine PDS as follows.
We find a generator g of K∗ by using a finding a prime factorisation of |K∗| and using algorithm 4.80 of
[HAC96], recalling that K∗ is a cyclic multiplicative group. With this generator, we can use the discrete
logarithm logg : K∗ → Z|K∗|−1 for which k = glogg(k) for all k ∈ K∗, which can be computed using the
Pohlig-Hellman algorithm or the baby-step giant-step algorithm.

Then we have logg(fi(x)) = logg(ci) +
∑
j∈[d]

aij logg(xj) for all x ∈ Kd and since

logg(fi(f(x))) = logg (cif1(x)
ai1 ...fd(x)

aid) = logg(ci) +
∑
j∈[d]

aij logg(fj(x)), we can seen that for matric

A with coefficients aij ∈ Z|K∗|−1, we have logg(f(x)) = logg(c) + A logg(x) and hence logg (f
n(x)) =

logg(c)

(
n−1∑
i=0

Ai

)
+ An logg(x). So we’ve reduced the study to that of an affine system, all be it one on a

ring instead of a field.

To get the fixed points and cycles in this context, we need to perform repeated matrix multiplication
as we have no Jordan canonical form available, and solve a system of form Mx = b without having
Gaussian elimination availble.
The last steps can be done as follows. Note that if we choose representatives of the coefficients in Z, then
we can solve Mx = b for the representatives and since · : Z → Z|K∗|−1 is a ring morphism, for a solution
x′ of Mx′ = b, x′ will solve Mx = b.
Now, we can use the Herminte normal form or the Smith normal for as Z is a PID (it’s even Euclidean)
to solve Mx = b.

20

5 Cellular automata

5.1 Basics of CA

We’ll study a specific type of cellular automata:

Lattice cellular automata:

A lattice-cellular automaton (lCA) has state space S(Z
d), where S is a finite set describing

the state of the "cells" of Zd. The state of cells will change under a local transition function
fl : S

[n] → S depending on the sates of the cells in a neighborhood D, a finite set such as B1(0, 1) ∩ Zd,
of size n, so that in state vector u ∈ S(Z

d), cell z ∈ Zd will update its state to fl(uz+D). The global
transition function is therefore described by f = u 7→ (fl(uz+D))z∈Zd .

Note that this isn’t an FDS anymore, as the state space is infinite. We’ll study lCA anyway.
An FDS version/generalization can be found in:

Graph cellular automata:

A graph cellular automaton (gCA) has state space SV where the cells V are the vertex set
of a graph (V,E). We equip this graph with positive edge weights w : E → R+, which provides a metric
d on the graph’s vertices, where d(u, v) is the length of a shortest path from u to v. The state of cells v
will change under a local transition function fv : SD(v) → S depending on the sates of the cells in a
neighborhood D(v), a finite set such as Bd(v, 1), so that in state vector U ∈ SV , cell v ∈ V will update
its state to fv(UD(v)). The global transition function is therefore described by f = u 7→ (fv(UD(v)))v∈V .

The generalization come from considering Zd as an infinite graph with vertices Zd and edges linking vertices
that differ by one coordinate only.

One can make a connection from graph cellular automata to graph coloring. If we choose states E = [|V |],
weights w = 1 so that the neighbourhoods are D(v) = δ(v) ∪ {v} = Bd(v, 1), and local transition fv(xD(v)) =
min([|V |]\{xδ(v)}) (smallest label/color not present in the neighborhood), then a fixed point of this system
is a valid coloring of the graph. Indeed, if xv = min([|V |]\{xδ(v)}), then in particular xv ̸= xw for all
w ∈ δ(v), and that for all v.
However, the coloring may not be a minimum one. A counterexample can be built as follows: take copies
if K1,K2, ...,Kn and color them with a valid coloring, where Kq is colored with colors from [q], then add
a vertex and connect it to the higthest labeled/colored vertices of these copies and color it with n + 1.
This produces a valid coloring, and it’s even a fixed point of the graph. Indeed, in the complete graphs,
the available colors in the iteration map are just the color of the vertex itself, and since the vertex linking
the complete graphs has neighbours of all colors of [n], it will stay at n+ 1.
This coloring isn’t minimum, however. We could have permuted the colors in the complete graphs so that
the vertex linking them is connected to only vertices of with color 1, so that we could get a minimum
coloring by coloring the central vertex with 2 (minimum since the complete graph Kn needs n colors).
COMPLETE: is this a approximation algorithm ? How fare off can the fixed-point-coloring be from a
minimum one ?

It may be tempting do say that (f(x))v = fv(xD(v)) ⩽ xv.
However, for fv(xD(v)) ⩽ xv to occur, the color xv must not be present in the neighbourhood of v, as

21

otherwise, it may happen that all lower colors are present in the neighbourhood of v, so that fv(xD(v)) > xv.

Even if the initial coloring is a valid one, we have no guarantee that in the colorings of the iterates
are valid, so we can’t expect to always have fv(xD(v)) ⩽ xv. This is for example the case of a 6-cycle
in which we color the vertices from 1 to 6: two vertices will have their colors oscillate between 1 and 3
indefinitely, as can be seen after performing 4 iterations.

The study of CA we now give is similar to that of continuous dynamical systems.
We’ll be interested in notions of convergence, which require a metric on the state-space:

Metrics:

For a lCA, for state vectors x, y ∈ S(Z
d), we define k(x, y) = inf(q : xB1(0,q) ̸= yB1(0,q)) (the

radius of the first Manhattan distance ball around the origin where the states disagree). Then

dC(x, y) =

{
1

k(x,y)+1 : k(x, y) finite

0 : k(x, y) infinite
is a metric on S(Z

d). It’s called the Cantor metric of the lCA.

For a gCA, for state vectors x, y ∈ SV , we define the Hamming distance dH(x, y) = |{v : xv ̸= yv}|
(the number of cells who’s states differ).

Proof: We only prove the triangular inequalities.
We have min(k(x, y)− 1, k(y, z)− 1) ⩽ k(x, z)− 1, as min(k(x, y)− 1, k(y, z)− 1) < k(x, z), for otherwise,
xB1(0,k(x,z)) = yB1(0,k(x,z)) and yB1(0,k(x,z)) = zB1(0,k(x,z)), so that xB1(0,k(x,z)) = zB1(0,k(x,z)), contradicting
the definition of k(x, z).
Since min(a, b) ⩽ c ⇒ min(a+ r, b+ r) ⩽ c+ r for real numbers, we have min(k(x, y) + 1, k(y, z) + 1) ⩽
k(x, z) + 1.

Next, note that
(k(x, y) + 1)(k(y, z) + 1)

k(x, z) + 1
⩽

min(k(x, y) + 1, k(y, z) + 1)max(k(x, y) + 1, k(y, z) + 1)

k(x, z) + 1
⩽

max(k(x, y) + 1, k(y, z) + 1).

Finally, as max(k(x, y)+1, k(y, z)+1) ⩽ k(x, y)+1+k(y, z)+1 (positivity), we get
(k(x, y) + 1)(k(y, z) + 1)

k(x, z) + 1
⩽

k(x, y)+1+k(y, z)+1 from which dividing by (k(x, y)+1)(k(y, z)+1) and simplifying yields the triangular
inequality.
For the Hamming distance note that if xv ̸= zv, then at least one of xv ̸= yv or yv ̸= zv must hold (as
equality is transitive).

Continuity:

The global transition functions of lCA and gCA are continuous wrt. the Cantor and Hamming
distance respectively.

Proof: For any state u and any ε > 0, we which to find a δ > 0 so that dC(u, v) < δ ⇒ dC(f(u), f(v)) < ε
for all states v.
Note that dC(u, v) < δ ⇔ k(u, v) >

1− δ

δ
so that for integers a ⩽

1− δ

δ
⇔ 1

1 + a
⩾ δ, we have

uB(0,a) = vB(0,a). If we set
1

1 + a
= δ for an a large enough so that z+D ⊆ B(0, a) for all z ∈ B(0, b) (for an

integer b to be chosen soon), then uz+D = vz+D and therefore fl(uz+D) = fl(vz+D), aka (f(u))z = (f(v))z

22

for all z ∈ B(0, b), so that k(f(u), f(v)) > b ⇔ dC(f(u), f(v)) <
1

1 + b
. Choosing b so that

1

1 + b
⩽ ε and

a so that z +D ⊆ B(0, a) for all z ∈ B(0, b), which is possible as D is finite and hence bounded, does the
job.

For the gCA, δ =
1

2
always does the job.

With the notions of distance and continuity in this discrete setting, we can use results from functional
analysis or continuous dynamical systems.

For example, by noticing that the gCA metric space is complete (Cauchy sequences eventually become
constant), we can use the Banach fixed point theorem on a certain class of transition functions to obtain
the existence of a single fixed point to which all initial states converge.
Indeed, we contractions for which dH((f(u), f(v)) < dH(x, y) fall in this category: as the Hamming
distance is integer valued, dH((f(u), f(v)) < dH(x, y) ⇔ dH((f(u), f(v)) − 1 ⩽ dH(x, y) and since

z 7→ z − 1

z
is increasing, we have

dH((f(u), f(v))− 1

dH(x, y)
⩽

dH(x, y)− 1

dH(x, y)
⩽

|V | − 1

|V |
, so that dH is

|V | − 1

|V |
-

Lipschitz, and therefore a contraction.
However, finding non-trivial examples of f for which dH((f(u), f(v)) < dH(x, y) is difficult.

23

5.2 Attractors

Attractors:

A set of states Y ⊆ E(Zd) or Y ⊆ EV is a (pre-) attractor if f(Y) ⊆ Y .

24

5.3 Greenberg-Hastings automaton

25

6 Data

6.1 References

• [HAC96] "Handbook of Applied Cryptography", by A. Menezes, P. van Oorschot, and S. Vanstone,
CRC Press, 1996

26

