
Conversational Combinatorics
Yves Jäckle
Version 1

1



Contents

1 Polyominos 3

2 Distinct representatives and Hall’s theorem 4

3 Chains, antichains and a Sperner’s lemma 6

4 Shadows, compression, and shifts 9
4.1 Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Kruskal-Katona theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Perles-Shelah-Sauer-Vapnik-Chervonensky theorem . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Erdös-Ko-Rado theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Katona’s union theorem and Kleitman’s diameter theorem . . . . . . . . . . . . . . . . . . 16

5 Triangle-free graphs and Mantel’s theorem 17

6 The regularity method 18
6.1 Introductory problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Szemerédi’s graph regularity lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 The Combinatorial Nullstellensatz and regular subgraphs 24

8 Van der Waerden’s theorem 28

9 Hales-Jewettes theorem 29

10 Infinite graphs 30
10.1 Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.2 More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11 Positional games 33
11.1 Tic-tac-toe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.2 Maker-breaker games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12 Social choice with Boolean analysis 38
12.1 Social choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.2 Boolean analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.3 The theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2



1 Polyominos

Book in the 1001-folder
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2 Distinct representatives and Hall’s theorem

Consider a collection of n sets Si that may intersect. Our goal is to find distinct representatives of this
set, in the sense that we find distinct si ∈ Si for each set Si. The trouble seems to arise when we pick
these representatives without care: one set may run out of elements not already chosen as representatives
for other sets, if it intersects with many other sets.

We can represent the problem as a bipartite graph, where the n sets Si are represented by bipartition set
U , and the elements of the "universe" ∪i∈[n]Si are represented by bipartition set W . we include the edge
{Si, s} if s ∈ Si. Then finding a system of distinct representatives is equivalent to finding a matching of U
into W , which is a set of edges with no common endpoints that covers all of U . Under what assumptions
is there such a matching ?

Let’s start by looking for some easy necessary conditions that such a matching must satisfy. Since we "in-
ject" U into W , we must expect |U | ⩽ |W |. More precisely, we have |U | ⩽ |N(U)| for the neighbourhood
of U . In fact, this is true for any subset of U , so that for all S ⊆ U , we have |S| ⩽ |N(S)|.
The amazing thing is that this condition is already sufficient:

Hall’s theorem:

If |S| ⩽ |N(S)| for all S ⊆ U , then we can match U into W .

We’ll try induction on the size of U by matching its elements one at a time.
In the initial case of |U | = 1, the condition says that the single element of u has a neighbour, that we can
then match it with to get the desired result.
For the step, we’d like to match a vertex u of U to some w ∈ W so that the condition |S| ⩽ |N(S)| is
maintained. The only way that |S| ⩽ |N(S)| can be violated by such a move is if we had |S| = |N(S)| for
some S for which w ∈ N(S) but u /∈ S, as after deletion of u and w, we’d have |S| > |N(S)|, as |N(S)|
decreased by 1, but |S| didn’t.

In fact, the case in which |S| < |N(S)| for all (non-empty proper) S ⊆ U can be handled by taking
any u ∈ U and matching it to one of its neighbours, then deleting the pair and using induction to handle
the remaining graph. To see that Hall’s assumption is inherited by the remaining graph, take a set S for
the initial graph and disjoin these cases. If S contained u, then N(S) contained w, hence both sides of
|S| < |N(S)| decrease by 1 and the condition is maintained. If S didn’t contain u, it may happen that
N(S) contains w, but even when |N(S)| decreases by 1, we still have |S| ⩽ |N(S)| − 1 as they where inte-
gers. If N(S) didn’t contain w, then none of the sides of |S| < |N(S)| decreased, and we keep the condition.

Now, how do we handle the problematic case of |S| = |N(S)| for some S ⊆ U ?
An idea is to use the induction hypothesis to match S into N(S) and then match the rest U\S by induction
again. The first problem in realising this approach is that to apply induction, S has to be proper and
non-empty so as the sizes of S and U\S to be less then hat of U . This is where the assumption on S
(in parentheses) in the previous paragraph came from. If the empty set and U are the only to satisfy
|S| = |N(S)|, then we are in that case that we already handled.
The next step in successfully applying the induction assumption is to check Hall’s condition. In the graph
induced by the S and N(S), for which |S| = |N(S)|, we also have |S′| ⩽ |N(S′)| for all S′ ⊆ S, as they
are also subsets of U . So we can match S into N(S).
Now, we ask if the graph induced by U\S and W\N(S) has this property too. If some S′ ⊆ U\S satisfied
|S′| > |N(S′) ∩W\N(S)|, then by adding |S| = |N(S)| on both sides, using disjointness of S′ and S,
and the fact that N(S ∪ S′) can be partitioned into N(S) and N(S′) ∩W\N(S), we’d get contradiction
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|S ∪ S′| > |N(S ∪ S′)| to the Hall condition on the initial graph.
Therefore, we may apply induction and all cases worked out.

COMPLETE: add the other proofs from Diestel ?
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3 Chains, antichains and a Sperner’s lemma

We’re interested in the following two types of structures on a finite set X:

Chains and antichains:

A chain is a set C ⊆ 2X such that for all S,U ∈ C, we have S ⊆ U or U ⊆ S.
An antichain is a set A ⊆ 2X such that for all S ̸= U ∈ A, we have S ⊊ U and U ⊊ S.

We’ll first explain the name of chains with the following charcterisation:

Why they’re called chains:

A chain C is a finite set C ⊆ 2X of form C = {C1, .., Ck} with C1 ⊆ C2 ⊆ ... ⊆ Ck.

Had we defined chains like this, the property we actually defined them with would have followed immedi-
ately, since Ci, Cj ∈ C, we have Ci ⊆ Cj for i < j and Cj ⊆ Ci for j < i.
To see that chains are of the form we describe, picture a digraph who’s vertices are the different sets of C,
that we connect by an edge from S to U if S ⊆ U . The chain definition translates to this digraph being
complete. A sequence of different sets C1 ⊆ C2 ⊆ ... ⊆ Ck then translates to a dipath in the digraph.
Indeed, a diwalk that would loop on itself would correspond to a sequence C1 ⊆ C2 ⊆ ... ⊆ Ck ⊆ C1, so
that all its sets must actually be equal, a case we excluded by considering one one per different set.
What can we about this graph ?
In our remark, we just shown that the digraph is acyclic. Such digraphs have a source (a vertex that is
only the tail of edges) and a sink (a vertex that is only the head of edges). They are start and end of a
longest dipath in the graph. Indeed, since we can’t prolong such a maximum dipath, the vertices not on
the dipath can’t lead to its start, for otherwise, we could prolong our dipath along them. Also the vertices
on the dipath can’t lead back to the start, for we’d create a dicycle this way. So all edges can only lead
into the start, which is herefore a source. A similar argument explains why the end is a sink.
If we delete the source and sink, aka. their corresponding sets from the chain, then we still have a complete
directed acyclic graph on the remaining vertices, aka. we still have a chain. This leads us to conclude
with induction. For chains of sizes 1 and 2, this is clear, and if a chain of size k or less can always be
written as {C1, .., Ck} with C1 ⊆ C2 ⊆ ... ⊆ Ck, then when considering a chain of size k + 1, we can
delete its source (that we’ll rename Ck+1), get a chain of size k in form C1 ⊆ C2 ⊆ ... ⊆ Ck, so that
C1 ⊆ C2 ⊆ ... ⊆ Ck ⊆ Ck+1, since Ck+1 is a source, and the induction step holds.

How long can chains be ?
The least we can "add" at each step in C1 ⊂ C2 ⊂ ... ⊂ Ck is a single element. Intuitively, we can build
a long chain by starting with the empty set ∅, and adding elements of X to the subset one at a time to
make the sets of the chain. This produces chains of length |X|+ 1.
This is actually the longest type of chains we can find. To see why this is the case, note that a longest
chain must contain the empty set C1 = ∅, as we could prolong it wih the empty set if it didn’t, con-
tradicting maximality, and that the cardinality of the |Ci| must strictly increase, so that we can bound

|X| ⩾ |Ck| − 0 =

k∑
i=2

(|Ci| − |Ci−1|) ⩾ k − 1, which rephrases to k ⩽ |X|+ 1.
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How long can antichains be ?
This is a more difficult question to answer. A first candidate for a large antichain could be the r-sets of
X, which are the subsets of X of size r, for some r ⩽ |X|. They form an antichain of X, since they can’t
be included in one another, unless they’re equal, due to having the same size.

There are
(
|X|
r

)
r-sets of X, which is biggest for r =

⌊
|X|
2

⌋
and r =

⌈
|X|
2

⌉
.

Again, we’d like to know if we can get bigger then in this construction.
The answer will be based on a study of the interaction between chains and antichains:

Chains-antichains interaction:

For any antichain A and any chain C, the chain C can contain at most one element of the an-
tichain A. So, if we partition X into p chains PCi, in the sense that the PCi are chains, are pairwise
disjoint, and so that any S ⊆ X is in some PCi, for some i, then we’ll know that |A| ⩽ p.

This will be our strategy for showing |A| ⩽
( |X|⌊

|X|
2

⌋): we’ll build a partition of size p =

( |X|⌊
|X|
2

⌋) into

chains. But first, we’ll prove the claims we just made.

The first part is due to sets of a chain being included in one another, something that is precisely prohibited
in antichains. The second part follows from the first, as all sets of A, which are subsets of X, are at least
one chain, but two sets of an antichain can’t be in the same chain, as this is prohibited from the first part,
so that there can’t be more chains then sets in the antichain, aka. |A| ⩽ p.

We’re now ready for:

Sperner’s lemma:

For any antichain A, we have |A| ⩽
( |X|⌊

|X|
2

⌋).

With the previous strategy, our goal is to find a partition using as few chains a possible to get an upper-
bound that is as tight as possible on the size of an antichain. How do we find such a partition ?

To get few chains, we want our chains to be as long as possible. This can be done by choosing chains that
add a single element at each subsets.
Let’s seek inspiration in a figure of the situation. Below, we show the digraph representing the subsets of
X = {1, 2, 3}, where edges represent inclusion, where the set at the head has exactly one element more
that that at the tail. In this representation a subset is included in another if there is a path from one to
the other. We’ve ordered the vertices by layers that correspond to set size of the subsets. In fact, we’ll
refer to layer r to describe the layer of r-sets.
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∅

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

{1,2,3}

A partition by chains corresponds to a partition into dipaths. To get long paths, aka. long chains, we’ll
try to build up them layer by layer, as follows. We start with a dipath {∅}. Then, at each layer, we look at
the previous one. If we’re on layer r and there are less vertices on the previous layer (which corresponds

to r ⩽
|X|
2

), we take those that are the endpoints of the dipaths we had so far, and extend these paths,
and we extend these dipaths by adding edges who’s tails are in the previous layer and heads are in the
current layer. If the edges we use for extension form a matching of the vertices of layer r − 1 to layer r,
then the dipaths will still be disjoint, as non of their new ends coincide.
We have to prove that such a matching exists. Let’s try to get it from Hall’s theorem, since the graph
induced by layers r − 1 and r is bipartite. If W is any set of nodes on layer r − 1, and Γ(W ) is the
set of its neighbours on layer r, then by double-counting edges as

∑
v∈W

deg(v) =
∑

v∈Γ(W )

deg(v), where

deg(v) = (|X| − (r− 1)) for v ∈W , since we can add one of |X| − (r− 1) remaining elements of X to the
(r − 1)-set represented by v to get an r-set, and deg(v) = r for v ∈ Γ(W ), since we can delete one of r

elements of the r-set represented by v to get an (r−1) set, we get
|Γ(W )|
|W |

=
(|X| − (r − 1))

r
=

|X| − 1

r
−1,

so that |W | ⩽ |Γ(W )| ⇔ r ⩽
|X| − 1

2
, which is the case when r ⩽

|X|
2

. So Hall’s theorem applies and
such a matching does indeed exist.
Now, there are still nodes on layer r hat aren’t in a dipath it this stage. We’ll simply let them be new
one-vertex dipaths, and move to the next layer.

This construction works until we arrive at layer
|X|
2

for even |X|, and layer
⌊
|X|
2

⌋
for odd |X|. In

the odd case, we have to match layers
⌊
|X|
2

⌋
and

⌈
|X|
2

⌉
. Here, Hall still applies as |W | = |Γ(W )|, since

|X|−
(⌈

|X|
2

⌉
− 1

)
=

⌈
|X|
2

⌉
. Finally, we consider the layers r >

⌈
|X|
2

⌉
. There, we’ll have |W | ⩾ |Γ(W )|,

but we can still use Hall, this time matching the vertices of layer r into those of r − 1 (so in the oppo-
site orientation). This means that we can prolong some dipaths, while others will have to end at layer r−1.

The dipaths we built are disjoint and all vertices are contained in some dipath, which is in a sense a
loop invariant of our implicit algorithm. We’ve therefore built a partition into chains this way. How many
of these dipaths/chains are there in our partition ?

The crucial observation is that all paths pass through layer
⌊
|X|
2

⌋
. This allows us to conclude that there

are
( |X|⌊

|X|
2

⌋) paths, since all vertices
( |X|⌊

|X|
2

⌋) of the layer are in some path, no path can contain more

then one vertex per layer, and all paths have a vertex on that layer. To see that paths pass through that
layer, note that paths where prolonged until that layer, so that they reach the layer in particular, or start
there.

This allows us to conclude with Sperner’s lemma, using the previous relation between partition size and
antichain size.
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4 Shadows, compression, and shifts

4.1 Workspace

We can measure proximity of sets by using the distance d(A,B) = |A∆B|. Indeed, this qantity is positive,
symmetric and zero precisely if A = B. To see that the trianngular inequality holds, consider A∆C, which
we want to relate to A∆B and B∆C and include A\C into A\B∪B\C by disjoining on whether elements
are in B, and similarly for including C\A into B\A∪C\B. So A∆C ⊆ A∆B ∪B∆C by rearranging, and
the size of the union being less then the sum of that of its parts. An intersting quantity related to a set
family is its diameter diam(F) = max

A,B∈F
|A∆B|.

The operation of compressing/squashing a family in a element x is that of forming Sx(F), which

is the image of F under cx : A 7→

{
A\x, if x ∈ A and A\x /∈ F
A, else

. It’s the family obtained by by re-

placing A with A\x if it contained x and if A\x wasn’t already in the family.

Compression maintains the size of the family, so that |Sx(F)| = |F|. Indeed, the map is injective, so
that there is a correspondence between sets: two different uncompressed sets won’t have the same image,
if a compressed set cx(A) = A\x has the same image as an uncompressed cx(B) = B, in the sense that
A\x = B, then we reach a contradiction in the fact that A\x /∈ F yet B ∈ F , and finally, if a compressed
set cx(A) = A\x has the same image as a compressed set cx(B) = B\x , in the sense that A\x = B\x,
then A = B must both have been in F , aka. they were the same set, so that injectivity holds.
So compression reduces the appearances of an element in the family, without affecting its size.

Another interesting property of compression is that it can only decrease the diameter of a family, so
that diam(Sx(F)) ⩽ diam(F). To see this, we disjoin cases on the images of A and B under com-
pression. If none of them or both of them were compressed, then cx(A∆B) = cx(A)∆cx(B) stays the
same. If only one of them, say A, was compressed, we disjoin cases on whether B contained x. If
it didn’t, cx(A)∆cx(B) = (A\x)∆B will decrease by x, as x ∈ A\B, and we’re good, but if it did,
cx(A)∆cx(B) will decrease by x, as x ∈ B\(A\x). For this case, since B contained x but wasn’t
compressed, it must have been the case that B′ = B\x ∈ F . Then the image can be bounded by
cx(A)∆cx(B) = (A\x)∆B ⊆ (A\x)∆B′ = cx(A)∆cx(B

′). So in all cases |cx(A)∆cx(B)| is bounded by
diam(F). Therefore the maximum of the left side satisfies the inequality too, which is what we wanted to
prove.

Compression also decreases the trace of a family. The trace of family F on set T is the family F|T =
{A ∩ T |A ∈ F}, so the intersctions of the sets of F with T . We have |Sx(F)|T | ⩽ |F|T |. To see this, note
that there is a surjection from F|T to Sx(F)|T that to A ∩ T ∈ F|T associates cx(A) ∩ T ∈ Sx(F)|T . By
definition of Sx(F)|T , all of its elements have an antecedent under this map.

A quick remark on repeated compression is that order matters! For example, Sx(Sy({{x, z}, {y, z})) =
{{x, z}, {z}} and Sy(Sx({{x, z}, {y, z})) = {{y, z}, {z}}, so they#re not the same.

We can use compression to form a independence system / a hereditary family from F , denoted
F̃ , which will have the propery that for A ∈ F and B ⊆ A, we must have B ∈ F̃ , aka. F̃ = ∪A∈F2

A. The
set system F̃ is formed as the union of all Sx1(...Sxk

(F)..), for all k ⩾ 0 and all xi ∈ X where X is the
ground set of the family (the case k = 0 can be understood as F). It has the property that for A ∈ F̃ ,
and any x ∈ A, we have A\x ∈ F̃ . This implies subset-stability, as we can get any subset by repeatedly
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deleting elements (formally, we induct on |A\B| where B ⊆ A).
Now, to see the property, assume for contradiction that there is some A ∈ F and B ⊆ A such that
B /∈ F̃ . We can the consider the inclusion maximal such subset of A that isn’t in F̃ , which we’ll call B
too, ignoring the previous one. The case B = A can be excluded as A ∈ F ⊆ F̃ . All C in the sandwich
B ⊊ C ⊆ A must be in F̃ , by maximality. So by taking any x ∈ A\B, we know that we can write B ∪ x
as cx1(...cxk

(F )..) for some F ∈ F . Since B /∈ F̃ and F ⊆ F̃ , we must have B /∈ F . So we have compres-
sion cx(B∪x) = B. Thus, B can be written as cx(cx1(...cxk

(F )..)), so that we actually end up with B ∈ F̃ .

Another way of forming a hereditary family Fcpr from F using compression is with the following al-
gorithm. While there is an x in the groung set X such that cx(F) ̸= F , keep iterating on family cx(F).
This loop will terminate, as cx(F) ̸= F requires there to be an A ∈ F such that cx(A) = A\x, so that
the size of one of the sets of the family decreases in each iteration, which may happen only finitely many
times. At termination, we end up with Fcpr = cxk

(...cx1(F)) where we had k iterations and compressed
along the sequence x1, ..., xk. This family has the property that cx (Fcpr) = Fcpr for all x ∈ X, meaning
that for any x ∈

⋃
A∈Fcpr

A, we must have A\x ∈ Fcpr. This is how we can clonclude that all subsets of

set in Fcpr are also in Fcpr: delete elements one at a time until reaching the subset, repeatedly using
argument A\x ∈ Fcpr to deduce that the sets where all in Fcpr.

A different operation is shifting. It corresponds to replacing a particular element by another. We apply

the map sij(A) =

{
(A\j) ∪ i, if j ∈ A, i /∈ A, (A\j) ∪ i /∈ F
A, else

to get its image Sij(F), in which sets

containing j but not i are replaced by those were i replaces of j, unless that replacement was already in
the family.
Just as for compression, we have |Sij(F)| = |F|. This is because sij is injective: if sij(A) = sij(B), then
if none or bother were shifted, we end up with A = B or (A\j)∪ i = (B\j)∪ i⇒ A = B, and if only one,
say A was shifted, we’d get a contradiction from B = (A\j) ∪ i /∈ F .

A family F is t-intersecting if for any two A,B ∈ F , we have |A ∩B| ⩾ t.

Shifting preserves the property of being t-intersecting. Indeed, we disjoin cases on |sij(A)∩sij(B)|. If one or
both were shifted, then in both cases |sij(A)∩sij(B)| = |A∩B| or |sij(A)∩sij(B)| = |(A∩B)\j∪i| = |A∩B|
(since in that case, both contained j and not i). If only one of them, say A, was shifted, we disjoin cases
on B. If it wasn’t shifted because j /∈ B, then if i /∈ B, |sij(A) ∩ sij(B)| = |((A\j) ∪ i) ∩ B| = |A ∩ B|
as i and j don’t appear in the intersection anyway, and if i ∈ B, |((A\j) ∪ i) ∩ B| > |A ∩ B| as now i
appears in the intersection. If j ∈ B and B wasn’t shifted because i ∈ B, then |((A\j)∪ i)∩B| = |A∩B|
as in the intersection, we replaced j with i. In the final case were j ∈ B, i /∈ B, but B′ = (B\j) ∪ i ∈ F
we do have the unfortunate |((A\j) ∪ i) ∩ B| < |A ∩ B| which would seem compromise the intersecting
property. Indeed, if Sij(F) had a pair of sets who’s intersection has size less then t, then it must be for
sets such as in this case, as in the other cases |sij(A)∩ sij(B)| ⩾ |A∩B| would contradict the assumption
that F is t-intersecting. However, this case actually can’t occur as it yields a contradiction: we have
|A ∩B′| = |A ∩ (B\j) ∪ i| = |((A\j) ∪ i) ∩B| = |sij(A) ∩ sij(B)| < t, which contradicts the t-intersecting
property of F at the pair A,B′ ∈ F .

We can define the p-shadow of a set family as the set of p-sized subsets of set from F , denoted
σp(F) = {P : |P | = p,∃A ∈ F , P ⊆ A}. In the case that F was made of k-sized sets, σk−1(F) is
often simply called the shadow of the family, and is denoted by ∂F .

We have σp(Sij(F)) ⊆ Sij(σp(F)). To show this inclusion, we take a P ∈ σp(Sij(F)), so that P has
size p and there is a B ∈ Sij(F) such that P ⊆ B, and we prove that it’s in Sij(σp(F)). We show this by
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case disjunctions on B.

First, we consider the case in which B was shifted: B = (A\j) ∪ i for some A ∈ F that contained j
but not i, so that B contains i and not j, and B /∈ F .
If i /∈ P , we have P ⊆ A, so that P ∈ σp(F). Simultaneously, since P ⊆ B, P can’t contain j either, so
that it wont be shifted, so that sij(P ) = P . Thus P ∈ Sij(σp(F)).
If i ∈ P , we consider the p-set (P\i)∪ j which is a subset of A as j ∈ A and all elements other then i and
j of P where in B = (A\j)∪ i. So (P\i)∪ j ∈ σp(F). Now, (P\i)∪ j will be shifted, if the last condition,
which here is P /∈ F holds. If the latter isn’t the case, then P ∈ F so that P ∈ σp(F), and since P didn’t
contain j, sij(P ) = P , so that P ∈ Sij(σp(F)) in this case too. Now, if P /∈ F so that sij((P\i)∪ j) = P ,
then P ∈ Sij(σp(F)) since we just saw that (P\i) ∪ j ∈ σp(F).

This concludes the case of a shifted B. If B wasn’t shifted, then B ∈ F and sij(B) = B, and we
disjoin three cases: either it’s because, j /∈ B, or it’s because j ∈ B but i ∈ B, or it’s because j ∈ B, i /∈ B
but (B\j) ∪ i ∈ F .

In the first case, we have P ⊆ B, so that P ∈ σp(F). Simultaneously, since P ⊆ B, P can’t con-
tain j either, so that it wont be shifted, so that sij(P ) = P . Thus P ∈ Sij(σp(F)).

In the second case, if i ∈ P , we still have P ⊆ B, so that P ∈ σp(F), and sij(P ) = P , as P has i.
Thus P ∈ Sij(σp(F)). If i /∈ P , we disjoin cases on whether j is in P . So if j /∈ P , we have sij(P ) = P and
conclude P ∈ Sij(σp(F)). If however j ∈ P , we can use the fact that (P\j)∪i ∈ σp(F) (since (P\j)∪i ⊆ B
is a p-set too in this case), thus when applying shift sij to the family σp(F), (P\j) ∪ i ∈ σp(F) prevents
P from getting shifted, so that sij(P ) = P , so that P ∈ Sij(σp(F)) again.

In the last case, we disjoin cases on whether j is in P . If it isn’t sij(P ) = P , so that P ∈ Sij(σp(F)) again.
If it is, then we use (P\j) ∪ i ⊆ (B\j) ∪ i ∈ F , for which (P\j) ∪ i ∈ σp(F), so that when applying shift
sij to the family σp(F), (P\j) ∪ i ∈ σp(F) prevents P from getting shifted, so that sij(P ) = P , so that
P ∈ Sij(σp(F)) again.

11



4.2 Kruskal-Katona theorem

An interesting case of set families are when there is an order on their elements, for example set families
of finite sets of N. In that case, if we perform shifts sij where i < j, we can expect the values of the sums
over all elements to decrease. Indeed, consider

∑
A∈F

∑
a∈A

a. If Sij(F) ̸= F , then one of the sets A of F must

have been shifted, and since
∑
a∈A

a −
∑

a∈(A\j)∪i

a = j − i > 0, we have
∑
A∈F

∑
a∈A

a >
∑

B∈Sij(F)

∑
b∈B

b. This

quantity will thus decrease for repeated applications of shifts sij where i < j, and since it’s in N, this can’t
happen forever, so that at by denoting F0 = F and for the kth shift sikjk where ik < jk, Fk = sikjk(Fk−1),
there must come an n such that Fn = sij(Fn) for all i < j. Such a family is called shifted.

Integer Kruskal-Katona theorem:

We consider a finite set family F of finite sets of N, so that the sets are k-sets, then for p < k

and n ⩾ k, we have |F| ⩾
(
n

k

)
⇒ |σp(F)| ⩾

(
n

p

)
.

We first note that if we’ve prove the theorem for family Sij(F), then it also holds for F . This is bacause
|Sij(F)| = |F| and |σp(F)| = |Sij(σp(F))| ⩾ |σp(Sij(F))| by our previous results, so that the bounds on
|F| imply those on Sij(F)|, which will imply the lower-bounds on |σp(Sij(F))|, hence on |σp(F)|. We can
therefore assume wlog. that F is shifted, as we can apply shifts to it until it is, prove the theorem for the
shifted family, then gain the bounds on F with the observation we just made. Note also that if F was
made of k-sets, then so is Sij(F) (elements are only swapped, so the sizes stay the same), so that we can
carry that assumption over to the shifted family as well.

We will show this by induction. The base case n = k corresponds to |F| ⩾ 1 ⇒ |σp(F)| ⩾

(
k

p

)
which is true since F has at least one k-set, who’s p-shadow has

(
k

p

)
elements.

For the step, we consider the case p = k − 1 first.
We use notations Fx = {A\x : A ∈ F , x ∈ A} and F¬x = {A : A ∈ F , x /∈ A}.
As a first lemma, we have σk−1(F¬1) ⊆ F1. Indeed, for any B ∈ σk−1(F¬1), there is a 1 ̸= j /∈ B such
that B ∪ j ∈ F¬1 ⊆ F . Since 1 < j, by shiftedness of the family, S1j(F) = F , so that the image of B ∪ j
is in F too, hence B ∪ 1 ∈ F . The latter means that B ∈ F1.

From this, we can deduce that |F1| ⩾

(
n− 1

k − 1

)
. We start by noting that |Fx|+ |F¬x| = |F|, as the

conditions forming their sets partition F . So if, for a contradiction, we had |F1| <
(
n− 1

k − 1

)
, then

|F¬1| = |F| − |F1| >
(
n

k

)
−
(
n− 1

k − 1

)
=

(
n− 1

k

)
. So F¬1 is a candidate for applying the induction hy-

pothesis (note that it’s also made of k-sets), so that |σk−1(F¬1)| ⩾
(
n− 1

k − 1

)
(apply the case p = k − 1),

hence |σk−1(F¬1)| > |F1|, which contradicts the σk−1(F¬1) ⊆ F1 we previously established.

We can partition σk−1(F) into the subsets in which we erase 1, aka. F1, and those in which we

12



didn’t erase 1. The latter can be interpreted as the subsets of F1 obtained by erasing an element, so
as {B ∪ 1 : B ∈ σk−2(F1)} (recall that the F1 are (k− 1)-sets). So we have |σk−1(F)| = |F1|+ |σk−2(F1)|
by counting the sets according to this disjunction of type.

Now, since |F1| ⩾
(
n− 1

k − 1

)
, it’s a candidate for applying the induction hypothesis (recall that the F1

are (k − 1)-sets) and therefore|σk−2(F1)| ⩾
(
n− 1

k − 2

)
(use p = (k − 1)− 1).

Thus |σk−1(F)| = |F1| + |σk−2(F1)| ⩾
(
n− 1

k − 1

)
+

(
n− 1

k − 2

)
=

(
n

k − 1

)
, which is the statement of the

theorem for p = k − 1.

To get the cases of lower p, will will do a reverse finite induction on p. The base case is then p = k − 1,
and the step involves showing the case p = k − (i+ 1) from p = k − i. The finite-induction assumption is

that |σk−i(F)| ⩾
(

n

k − i

)
.

To get this done, we split σk−(i+1)(F) = σ(k−i)−1(σk−i(F)), since subsets of size (k − i) − 1 are sub-
sets of subsets of size (k − i). By writing k′ = k − i and p′ = k′ − 1, we have σk−(i+1)(F) = σp′(σk′(F))

and assumption |σk′(F)| ⩾
(
n

k′

)
.

Since in the previous part of the proof in which p = k−1, k was arbitrary, we can use the exact same argu-

ments to show that |σk′(F)| ⩾
(
n

k′

)
⇒ |σk′−1(σk′(F))| ⩾

(
n

k′ − 1

)
, so that |σk−(i+1)(F)| ⩾

(
n

k − (i+ 1)

)
as desired.
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4.3 Perles-Shelah-Sauer-Vapnik-Chervonensky theorem

Perles-Shelah-Sauer-Vapnik-Chervonensky theorem:

Consider a family F and a k < |X| such that |F| >
k∑

i=0

(
|X|
i

)
.

Then there is a (k + 1)-set T ⊆ X such that |F|T | = 2|T | = 2k+1, aka. we can get any subset of T ans an
intersection of T and a set of F , or equivalently F|T is hereditary.

We will show this by contradiction, so that we assume that for all (k+1)-set T ⊆ X, we have |F|T | ≠ 2|T |.
Note that this means |F|T | < 2|T |, as F|T is made of subsets of T .
We can smell the contradiction in using the notion of Fcpr. On the one hand, we know that since Fcpr =
cxk

(...cx1(F)), and compression maintains family size, |Fcpr| = |F|, and since compression decreases
trace size, |Fcpr

|T | ⩽ |F|T | < 2|T | = 2k+1. What changed with Fcpr is that it’s hereditary. This is why
Fcpr can’t contain sets H of size k + 1 or greater: it would have to contain all that sets subsets (so
wlog. H has size k + 1), which would also be in Fcpr

|H so that |Fcpr
|H | ⩾ 2k+1. This allows us to bound

|Fcpr| ⩽
∣∣∣∣(X[k]

)∣∣∣∣ = k∑
i=0

(
|X|
i

)
, which with |Fcpr| = |F| contradicts our assumption.
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4.4 Erdös-Ko-Rado theorem

Erdös-Ko-Rado theorem:

We consider an (1-) intersecting family F on a ground set of size n, made of k-sets, for some k

satisfying 2k ⩽ n. We then have bound |F| ⩽
(
n− 1

k − 1

)
.
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4.5 Katona’s union theorem and Kleitman’s diameter theorem

We call a family F on a ground set of size n and s-union if for all A,B ∈ F , we have |A ∪ B| ⩽ n − s.
For the case s = 1, we just call it a union.

Katona union theorem:

We consider an s-union F on a ground set of size n.

If n− s = 2p is even, then |F| ⩽
p∑

k=0

(
n

k

)
, and if n− s = 2p+ 1 is odd, then |F| ⩽ 2

p∑
k=0

(
n− 1

k

)
.

Kleitman diameter theorem:

We consider a family F on a ground set of size n with diameter at most d.

If d = 2p is even, then |F| ⩽
p∑

k=0

(
n

k

)
, and if d = 2p+ 1 is odd, then |F| ⩽ 2

p∑
k=0

(
n− 1

k

)
.
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5 Triangle-free graphs and Mantel’s theorem

Intuitively, if a graph has many edges, it should have a triangle: the more edges you add to the graph,
the harder it gets to add them between vertices that don’t already have a common neighbour. Let’s ask
for precision: what is the most edges an n-vertex graph can have, so as to contain no triangle ?

The answer is:

Mantel’s theorem:

A triangle-free graph on n vertices can have at most
⌊
n2

4

⌋
edges.

As was suggested just before, a triangle-free graph has the following property: the neighbourhood of a
vertex is an independent set, in the sense that there are no edges between distinct neighbours, as such
edges would close a triangle. So for any vertex v, all edges of the graph must have at least one of their
endpoints in V \N(v).

Since our goal is to bound the number of edges, we will count them by their endpoints (like in the
handshake lemma), which we now have information on. In the sum

∑
u∈V \N(v)

deg(u), all edges will be

accounted for at least once, as they have an endpoint in V \N(v) and will be counted by a corresponding
deg(u) = |δ(u)| = |N(u)|, with only the edges with both endpoints in V \N(v) that will be double-counted,
once for each endpoint, so that |E| ⩽

∑
u∈V \N(v)

deg(u).

To make a certain parallelism appear, recalling that v was actually arbitrary, we can bound
∑

u∈V \N(v)

deg(u) ⩽

|V \N(v)|max
u

(deg(u)), which specified for a maximum degree vertex vM yields |E| ⩽ |V \N(vM )|deg(vM ) =

(|V |−|N(vM )|).|N(vM )|. Finally, applying inequality (n−x)x ⩽
n2

4
(which is equivalent to (n−2x)2 ⩾ 0),

we get |E| ⩽ n2

4
, and since we’re dealing with integers |E| ⩽

⌊
n2

4

⌋
.

Is this a tight bound, or are we overestimating here ?
Let’s seen what we get from having equality in our previous inequalities.
First, |E| =

∑
u∈V \N(vM )

deg(u) means that no double-counting may occur: all edges have exactly one end-

point in V \N(vM ). This means that we’re actually dealing with a bipartite graph, with bipartition sets

V \N(vM ) and N(vM ). Next, (n− |N(vM )|).|N(vM )| =
⌊
n2

4

⌋
can actually only be achieved by a unique

particular integer |N(vM )|. It must be |N(vM )| =
⌊n
2

⌋
or |N(vM )| =

⌈n
2

⌉
, since x 7→ (n−x)x is increasing

om
[
0,
n

2

]
, and decreasing on

[n
2
, n
]
.

Now, for a complete bipartite graph K⌊n
2 ⌋,⌈n

2 ⌉, which is triangle-free, the number of edges is
⌊n
2

⌋ ⌈n
2

⌉
.

For even n, this equals
⌊
n2

4

⌋
as we can drop the floor and ceiling, and for odd n = 2k + 1, we have⌊n

2

⌋ ⌈n
2

⌉
= k(k + 1), and

⌊
n2

4

⌋
=

⌊
4k2 + 4k + 1

4

⌋
= k2 + k = k(k + 1).
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6 The regularity method

6.1 Introductory problems

COMPLETE: find introductory problem, move regularity definitions into that problem’s solution
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6.2 Szemerédi’s graph regularity lemma

Edge density:

Denoting with e(X,Y ) = |{{u, v} ∈ E : u ∈ X, v ∈ Y }| the edges between vertex sets X,Y , we

define the edge density d(X,Y ) to be
e(X,Y )

|X||Y |
.

This is also the probability of getting a e(X,Y )-edge graph in a bipartite graph with partition sets of
size |X| and |Y |, where edges are chosen uniformly. In our context, X and Y may share vertices, so that
|X||Y | may be larger then the number of possible edges.

(ε, δ)-regular pair:

For ε, δ ∈]0, 1], an (ε, δ)-regular pair of vertex sets X and Y is a pair for which for all subsets
A ⊆ X and B ⊆ Y not to relatively small, in the sense that |A| ⩾ ε|X| and |B| ⩾ ε|Y |, we have close
densities to the supset one: |d(A,B)− d(X,Y )| ⩽ δ.

In a pair that is not (ε, δ)-regular, subsets A ⊆ X and B ⊆ Y with |A| ⩾ ε|X| and |B| ⩾ ε|Y |,
for which |d(A,B)− d(X,Y )| > δ are called witnesses of the irregularity.

We’ll actually only need ε-regular pairs, which are (ε, ε)-regular pairs.
The reason we consider ε, δ ⩽ 1 is that for ε, saying otherwise, |A| ⩾ ε|X| would contradict A ⊆ X, and
for δ, densities are always in [0, 1], so that the bound with δ > 1 would always be true.
To get close densities over subsets, we can’t expect to consider to small subsets in the definition. Consider
a large bipartite graph with a single edge: the density of the bipartition-sets is small, but the density of
the singleton subsets corresponding to the endpoints of the edge is 1. If we had ignore the constraints
|A| ⩾ ε|X| and |B| ⩾ ε|Y | in the definition, the bipartition-sets wouldn’t have qualifies as a ε-regular pair
fro small epsilon.

ε-regular partition:

An ε-regular partition is a partition of vertices into k sets Vi, for some k, such that by denot-
ing with R the pairs (i, j) ∈ [k]2 for which Vi and Vj are ε-regular, and by R its complement (the irregular
pairs), we have

∑
(i,j)∈R

|Vi||Vj | ⩽ ε|V |2.

By taking to elements x, y ∈ V uniformly and independently at random, the partition is ε-regular if the
probability of x and y being in a pair of partition sets that aren’t ε-regular, is less then ε. This translates

to
∑

(i,j)∈R

|Vi||Vj |
|V ||V |

⩽ ε, where
|Vi||Vj |
|V ||V |

is the probability of x ∈ Vi and y ∈ Vj .
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The road to finding an ε-regular partition is quite a curvy one.
It starts with the study of a particular random variable related to partitions. For partitions (Ui)i∈[k] of
a subset of vertices U and (Wi)i∈[l] of a subset of vertices W , we pick two points x ∈ U and y ∈ W
independently and uniformly at random, and we consider Z to be the edge-density of the partition sets
they ended up in. This relates to ε-regular partitions in the sense that if U = W = V and the partitions
are the same and also ε-regular, then P (Z > ε) ⩽ ε. What’s Z on average ?

We have E(Z) =
∑

i⩽k,j⩽l

|Ui||Wj |
|U ||W |

d(Ui,Wj) =
∑

i⩽k,j⩽l

e(Ui,Wj)

|U ||W |
=

1

|U ||W |
∑

i⩽k,j⩽l

e(Ui,Wj) = d(U,W ),

since
∑

i⩽k,j⩽l

e(Ui,Wj) = e(U,W ), as we induce a partition on edges.

So the average density among partition sets is the density of the ground sets.

The next step is based on notions of energy from probability theory. We’ll consider a quantity that
will increase under refinement, the same way energy decreases in until equilibrium in physics. In an effort

to compute the variance of Z, we consider E
(
Z2
)
=

∑
i⩽k,j⩽l

|Ui||Wj |
|U ||W |

d(Ui,Wj)
2, which we can combine

with E
(
Z2
)
⩾ E(Z)2 (convexity) to get

∑
i⩽k,j⩽l

|Ui||Wj |
|U ||W |

d(Ui,Wj)
2 ⩾ d(U,W )2.

Now, if U and W where already partition sets of a partition of V for example, say U = Vk and W = Vq,
we can make a certain pattern appear.

If p is the partition of the Vs, we can get a refinement p′ of p by replacing Vk with the Ui, that
we’ll call Vk,i and Vq by the Wj , which we’ll call Vq,j , to get a new partition of V . Then, we have∑
i⩽k,j⩽l

|Vk,i||Vq,j |
|Vk||Vq|

d(Vk,i, Vq,j)
2 ⩾ d(Vk, Vq)

2.

To make similarities appear, we write it as
∑

i⩽k,j⩽l

|Vk,i||Vq,j |d(Vk,i, Vq,j)2 ⩾ |Vk||Vq|d(Vk, Vq)2.

We then define the "energy" of a pair A,B by Qpr(A,B) =
|A||B|
|V |2

d(A,B)2. The normalization factor

1

|V |2
will be used to upper-bound energy, but for now just note that due to its positivity, the previous

inequality becomes
∑
i,j

Qpr(Vk,i, Vq,j) ⩾ Qpr(Vk, Vq).

We can make this an identity about partitions by introducing the "energy" of a partition

Q((Vi)i∈[L]) =
∑

k,q∈[L]

Qpr(Vk, Vq) =
∑

r,s∈[L]

|Vr||Vs|
|V |2

d(Vr, Vs)
2. If we refine a partition p into p′, then we can

add the inqualities
∑
i,j

Qpr(Vk,i, Vq,j) ⩾ Qpr(Vk, Vq) for all pairs Vk, Vq of p, as well as Qpr(A,B) ⩾ 0

for the pairs of p′ that havent shown up in the previous kind of inequalities (of which there aren’t any,
actually), to get Q(p′) ⩾ Q(p). So energy increases under refinement.

The reason we normalized the sum is so that energy is bounded: for any partition p, we have Q(p) ⩽ 1,

because
∑

r,s∈[L]

|Vr||Vs|
|V |2

= 1 (split the sum and recall we deal with a partition) and d(Vr, Vs) ⩽ 1 (density).
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Since the normalization factor is positive, we still keep the increase under refinement property. We want
our notion of energy to be bounded, since we’ll create a method that refines partitions so as to increase
energy by a fixed minimal amount. This will allow us to conclude that the process must terminate.
For now, let’s just collect:

Energy:

To a partition (Vi)i∈[L] of V , we associate an energy Q((Vi)i∈[L]) =
∑

r,s∈[L]

|Vr||Vs|
|V |2

d(Vr, Vs)
2,

which is upper-bounded by 1.

For a refinement p′ of a partition p, in the sense that we can group the sets of p′ so that the
groups form partitions of the sets of p, we have Q(p′) ⩾ Q(p).

To see that Q(p′) ⩾ Q(p) for any refinement p′ of p, note that we can refine sets of p one at a time,
increasing energy along the way by the argument we previously gave, where the refinement refine a single
set of p, until we reach p′.

As we mentioned, we’ll exploit the idea of energy having to increase under refinements, yet being upper-
bounded. The key point that relates this study to ε-regular partitions, is that we’ll find a way to exploit
witnesses of irregularities so as to get refinements that increase energy by a minimum amount. Since
energy is bounded, so increases can happen only finitely many times, and hence so must there cause, the
irregularites. This will guarantee our algorithm to end, and with a partition with few irregular pairs as
output.

So, how do witnesses of irregularities relate to energy ?
With our definition of energy, for the refinement p′ of p as described previously (refines one set), we could
write the pair-energy difference as

∑
i⩽k,j⩽l

Qpr(Vk,i, Vq,j)−Qpr(Vk, Vq) =

|Vk||Vq |
|V |2

 ∑
i⩽k,j⩽l

|Vk,i||Vq,j |
|Vk||Vq|

d(Vk,i, Vq,j)
2

− d(Vk, Vq)
2

 =
|Vk||Vq |
|V |2

(
E
(
Z2
)
− E(Z)2

)
,

so that
|V |2

|Vk||Vq|
(
∑

i⩽k,j⩽l

Qpr(Vk,i, Vq,j)−Qpr(Vk, Vq)) = V ar(Z).

We know that this increase will be positive, but we’d like to lower bound it when this is possible. By

expressing V ar(Z) = E
(
(Z − E(Z))2

)
=

∑
i⩽k,j⩽l

|Vk,i||Vq,j |
|Vk||Vq|

(d(Vk,i, Vq,j)− d(Vk, Vq))
2, we see a density dif-

ference appear, which relates to ε-regular pairs.

Indeed, if one of the partitions set pairs Vk,i, Vq,j is a witness to an irregular pair Vk, Vq, then we can bound
|Vk,i||Vq,j |
|Vk||Vq|

(d(Vk,i, Vq,j)− d(Vk, Vq))
2 > ε.ε.ε2 = ε4. So if such a pair exists, we have also V ar(Z) > ε4 and

thus energy boost
∑

i⩽k,j⩽l

Qpr(Vk,i, Vq,j) > Qpr(Vk, Vq) +
|Vk||Vq|
|V |2

ε4. This result has a nice name:
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The red bull lemma:

If p′ is a refinement of p such that p′ contains a witness pair for an irregular pair Vk, Vq of sets of

p, then
∑

i⩽k,j⩽l

Qpr(Vk,i, Vq,j) > Qpr(Vk, Vq) +
|Vk||Vq|
|V |2

ε4.

We can already see the end of the proof of the regularity lemma: if Q(p) is close to 1 and |Vk||Vq |
|V |2 ε4 would

make Q(p′) greater then 1, the fact that energy is at most 1 leads us to conclude that the pairs must be
ε-regular.

The issue is that the increment term depends on the size of the partition sets, on which we have no

bounds, but which we expect to decrease in size over successive refinements. However, the term
|Vk||Vq|
|V |2

is related to ε-regular partitions: if p isn’t ε-regular, we can lower-bound the sum of the
|Vk||Vq|
|V |2

corre-

sponding to irregular pairs by ε.

Now, assembling the inequalities, we get:

Q(p) ⩽
∑

(r,s)∈R

∑
c,c′

Qpr(Cr,c, Cs,c′s) +
∑

(r,s)∈R

∑
c,c′

Qpr(Cr,c, Cs,c′s)−
|Vr||Vs|
|V |2

ε4

, so that, making Q(p′) =∑
r,s

∑
c,c′

Qpr(Cr,c, Cs,c′s) appear and using bound we mentioned at the very begining of our argument,

namely
∑

(r,s)∈R

|Vr||Vs|
|V |2

> ε for partitions that aren’t ε-regular, we get the following key result:

Energy boosting refinements for irregular partitions:

If p is a partition that is not ε-regular, then by refining it the way we described produces a parti-
tion p′ such that Q(p′) ⩾ Q(p) + ε5.

We can now use the following procedure: start with the one-set partition of V into {V } and repeatedly
apply our refinement to boost energy, if for the current partition, it isn’t ε-regular. The energy increase
being at least ε5, and energy being upper-bounded by 1, this can happen at most ε−5 times. In particular:

Szemerédi’s graph regularity lemma:

ε-regular partitions exist for any ε ∈]0, 1]

What can we say about their size of these partitions?
As we mentioned, at each step, at most 2|R| new partition sets appear per pair in R, making it |R|2|R| new
sets in total. This is largest when |R| is largest, where |R| is all of the pairs. Since we start with a single
set, the next refinement will have 1.21 = 2 sets. Then, the next one will have at most 2.22 = 8 sets, and
then at most 8.28 in the next round. A more transparent bound can be obtained by using n2n ⩽ 2(2

n), so
that repeated insertion yields tower(2, 2i) for the ith iteration.
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In the slowest case however, refinements will add a single partition set at each iteration. Since a partition
can have size at most |V |, the algorithm must terminate after |V | iterations. This doesn’t necessarily make
it a polynomial time algorithm, since we haven’t discussed the efficiency of the step of finding a witness
pair.
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7 The Combinatorial Nullstellensatz and regular subgraphs

The big idea of the "polynomial method" of combinatorics is that of associating a polynomial to a certain
combinatorial object, such that the roots or non-root points of the polynomial correspond to particular
structures in the combinatorial object. Finding or counting these structures is then equivalent to finding
or counting roots or non-root points.

An example is guaranteeing the existence of regular subgraphs in some graphs. For a graph (V,E),
we can use indicator variables xe ∈ {0, 1} to indicate if the edge will be induced in the subgraph, and have
the subgraph be induced by these edges. Using incidence coefficients av,e for vertex v and edge e which
is 1 if v ∈ e and 0 otherwise, the sum

∑
e∈E

av,exe will represent the degree of v in the subgraph. A way to

get regularity is by setting the goals
∑
e∈E

av,exe ≡ 0 (p) for a prime p, and adding the assumption that the

maximum degree of (V,E) is 2p− 1 < 2p. Then, we know that the prime p divides
∑
e∈E

av,exe, which isn’t

one of the multiples 2p, 3p, ... of p since
∑
e∈E

av,exe < 2p by the degree constraint, so that we must have∑
e∈E

av,exe = 0 (the vertex won’t be part of the subgraph) or
∑
e∈E

av,exe = p.

To relate the goals to a polynomial, we can reformulate
∑
e∈E

av,exe ≡ 0 (p) to 1−

(∑
e∈E

av,exe

)p−1

̸= 0 (p)

with Fermat’s little theorem, as the only integers for which (n)p−1 ̸= 1 (p) are n ≡ 0 (p). We can ask for
this at any vertex, to get he existence of a spanning p-regular subgraph.

This can be expressed as
∏
v∈V

1−

(∑
e∈E

av,exe

)p−1
 ̸= 0 (p).

In fact, note that
∏
v∈V

1−

(∑
e∈E

av,exe

)p−1
 takes value 1 (mod p) at x = 0 and when x indicates

a p-regular subgraph and value 0 (mod p) if it indicates a non-p-regular subgraph. We can actually also
indicate x = 0 with

∏
e∈E

(1− xe).

We then consider f(x) =
∏
v∈V

1−

(∑
e∈E

av,exe

)p−1
 −

∏
e∈E

(1 − xe) as a polynomial over Fp. If x = 0

(he empty subgraph), it takes value 0, and if x ̸= 0, the only other roots correspond to non-empty non-p-
regular subgraph.

So the existence of a point x ∈ {0, 1}E for which f(x) ̸= 0 will imply the existence of a p-regular subgraph.
Fortunately, we have:

The Combinatorial Nullstellensatz:

We consider an n-variate non-zero polynomial f over a field F. Assume that for all multi-indices
(a1, ..., an) of monomials of f , the sum a1 + ...+ an is maximized by (m1, ...,mn). Then for finite Si ⊆ F
with |Si| > mi, there is a point x ∈ S1 × ...× Sn such that f(x) ̸= 0.

In our example, Si = {0, 1}. To apply the theorem, we need to check which monomial maximises the
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sum of its multi-index. We’ll actually need to add an assumption on our graph to get this. Indeed, in∏
e∈E

(1−xe), the sum maximiser is (1, 1, ..., 1) with sum |E|. In
∏
v∈V

1−

(∑
e∈E

av,exe

)p−1
, the sums are

at most (p− 1)|V |. We want to have (p− 1)|V | < |E|, so that (1, 1, ..., 1) is the unique maximiser, so that
2 = |Si| > mi = 1 holds and we may apply the theorem.

We can either set this condition directly, or embellish it: with 2|E| =
∑
v∈V

deg(v), we can see that

(p− 1)|V | < |E| is equivalent to the graph having average degree greater then 2p− 2.
The condition is compatible with that on the maximum degree of the graph, as

∑
v∈V

deg(v) ⩽ (2p− 1)|V |.

As a conclusion, we’ve shown that for a graph with average degree greater then 2p − 2 and maximum
degree at most 2p− 1, we may find a non-empty p-regular subgraph in it.

Now, let’s prove the combinatorial Nullstellensatz, shall we ?
First, we’ll need some algebra. We want to get a better description of the polynomials f for which all the
points of S1 × ...× Sn are roots. Can we find a certain representation of them ? Are they generated by a
particular family of polynomials ?

We’re used to factoring univariate polynomials in the form
∏

(x− r). We can then note that all polyno-

mials of form
∑
i∈[n]

hi
∏
s∈Si

(xi − s) , for any polynomials hi, will vanish on S1 × ...× Sn. In fact, we’ll show

that any polynomial that vanishes on S1 × ...× Sn can be written in this form.

We will derive the form recursively, so that we prove the result by induction.
The idea is to reduce the degree of f by subtracting terms of form hi

∏
s∈Si

(xi − s), so that the property of

vanishing on S1 × ... × Sn is maintained, but the multi-degrees are decreased. We’ll the expect to get a
polynomial with more roots then its degree allows, which must therefore be the zero polynomial, so that
f equals the sum of terms we subtracted.

We go ahead by writing
∏
s∈Si

(xi − s) = x
|Si|
i −

|Si|−1∑
j=0

cijx
j
i . If at the current iteration k, the polyno-

mial f −
∑
i∈[n]

h
(k)
i

∏
s∈Si

(xi − s) has a monomial (m1, ...,mn) in which xi has power ⩾ |Si|, then we sub-

tract h′i
∏
s∈Si

(xi − s) to get the next iteration, where h′i is a monomial (m1, ...,mi − |Si|, ...mn) with the

same coefficient as the previous one. The result is that the monomial (m1, ...,mn) will get replaced by(
xm1
1 ...x

mi − |Si|
i ...xmn

n

) |Si|−1∑
j=0

cijx
j
i . In the latter polynomials monomials, the powers of xi will be < mi.

So if we selected the monomial (m1, ...,mn) in which xi has power ⩾ |Si| such that mi was maximum for
this property, we note that in each iteration, there is an i for which the highest power in a monomial will
decrease in the iteration. The algorithm will therefore terminate, and with a f −

∑
i∈[n]

h
(k)
i

∏
s∈Si

(xi − s) in

which all monomials have mi < |Si|, for all i.

We will soon show as a quick lemma that such a polynomial must be the zero polynomial, so that from
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the last iteration we get expression f =
∑
i∈[n]

h
(k)
i

∏
s∈Si

(xi − s).

Indeed, consider a polynomial g that vanishes on S1 × ... × Sn and for who’s monomials mi < |Si|,

for all i. If we factor g as g =

mn∑
j=0

gjx
j
n, then by fixing a point in S1 × ... × Sn−1, we get a univariate

polynomial
mn∑
j=0

gjx
j
n in xn, which has |Sn| > mn roots, and must therefore be the zero polynomial. So for

all j, the polynomials gj vanish on all points of S1× ...×Sn−1. The property mi < |Si| for all i is inherited
by the gj , as otherwise we’d contradict it for g. So we are in the same context of assumptions, but with
less variables: this calls for a proof by induction. The base case is the univariate one, in which this is
just the fact that a polynomial with more roots then the degree is the zero polynomial. So our lemma holds.

We are now ready to prove the combinatorial Nullstellenstatz. We’ll prove it by contradiction, by showing
that it can’t vanish on S1 × ...× Sn−1. Note the difference to the previous lemma: here, (m1, ...,mn)
maximises a sum, and there may be monomials (a1, ...an) in f with ai ⩾ |Si| for some i, but which don’t
maximise their sum.
If it vanished, we could get f =

∑
i∈[n]

hi
∏
s∈Si

(xi − s) as we just described.

We have f =
∑
i∈[n]

hi
∏
s∈Si

(xi − s) =
∑
i∈[n]

hi

x|Si|
i −

|Si|−1∑
j=0

cijx
j
i

.

We can split the expression further into f =
∑
i∈[n]

 |Si|∑
j=mi+1

−cijxjihi +
mi∑
j=0

−cijxjihi

 (by setting ci|Si| = −1).

In the expression on the right, there is the monomial (m1, ...,mn). It must therefore also be on the left,

meaning that there is at least one i such that the monomial is in

 |Si|∑
j=mi+1

−cijxjihi +
mi∑
j=0

−cijxjihi

, which

in turn means that there is at least a j such that xjihi is that monomial. It can’t be part of the left sum,
where j > mi, as it all monomials of xjihi the power of mi is > mi. It could be on the left, but a closer
look at the hi will prevent this.

Recall how the hi were formed. At iteration k, we considered f −
∑
i∈[n]

h
(k)
i

x|Si|
i −

|Si|−1∑
j=0

cijx
j
i

. We looked

for a monomial (a1, ...an) of it where ai ⩾ |Si|, and subtracted c
(
xa11 ...x

ai−|Si|
i ...xann

)x|Si|
i −

|Si|−1∑
j=0

cijx
j
i


for the appropriate coefficient c, so that the (a1, ..., ai − |Si|, ...an) was added to h

(k+1)
i . Passing from

f −
∑
i∈[n]

h
(k)
i

x|Si|
i −

|Si|−1∑
j=0

cijx
j
i

 to f −
∑
i∈[n]

h
(k+1)
i

x|Si|
i −

|Si|−1∑
j=0

cijx
j
i

 then corresponded to deleting

(a1, ...an) and replacing it with monomials (a1, ..., ai − q, ...an) where 1 ⩽ q ⩽ |Si|.
Let’s now look at the multi-index sums. At each iteration, in the hi, a monomial who’s sum is less by

|Si| then that of a monomial from f −
∑
i∈[n]

h
(k)
i

x|Si|
i −

|Si|−1∑
j=0

cijx
j
i

 is added to it. Also, the multi-index
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sums of f −
∑
i∈[n]

h
(k)
i

x|Si|
i −

|Si|−1∑
j=0

cijx
j
i

 will decrease of the iterations, as we replace its (a1, ...an) with

(a1, ..., ai − q, ...an), where 1 ⩽ q ⩽ |Si|. We can therefore conclude that the highest an multi-index sum
in hi can be is m1 + ...+mn − |Si|, as it’s highest for the monomial of the first iteration.

We can now show that (m1, ...,mn) can’t be part of
mi∑
j=0

−cijxjihi. Indeed, the multi-index sums of the

monomials in the latter are a1 + ...+ ai + j + ...an+ ⩽ m1 + ...+mn − |Si|+mi < m1 + ...+mn since
|Si| > mi.
We therefore get the contradiction we desired.
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8 Van der Waerden’s theorem

For colorings with more then 1 color, can one find infinite arithmetic progrressions ?
The answer is no and the idea behind it is that we can construct colorings in which longer and longer
segments have the same color, so that no step of an arithmetic progression can cross them.

Such a coloring could be coloring the j +
n∑

i=0

i with 0 ⩽ j ⩽ n for even n in red, and of odd n in blue.

This will assign numbers a unique color, as each number can be represented uniquely as j +
n∑

i=0

i with

0 ⩽ j ⩽ n, since
n∑

i=0

i
n−→
∞

∞ and is incresing, so that for any number m, there is a unique n such that

n∑
i=0

i ⩽ m <
n+1∑
i=0

i, so that j = m−
n∑

i=0

i < n+ 1.

Now, an infinite arithmetic progression has form a, a+ s, a+ 2s, .... We write a = j +
n∑

i=0

i. We consider

m ⩾ 2max(s, n)+1. There must be a point a+ks of the progression such that a+ks <
m∑
i=0

i ⩽ a+(k+1)s,

since a ⩽
n+1∑
i=0

i ⩽
m∑
i=0

i (as 2max(1, n) ⩾ n+ 1) and the progression is increasing and diverges. But since

s ⩽ m, we have a + (k + 1)s = s + (a + ks) ⩽ m +
m∑
i=0

i, so that a + (k + 1)s is in the monochromatic

interval between
m∑
i=0

i and m+

m∑
i=0

i.

We will now show that a+ ks ⩾
m−1∑
i=0

i, so that a+ ks is in the monochromatic interval between
m−1∑
i=0

i and

m− 1+

m−1∑
i=0

i, so that a+ ks and a+ (k+1)s can’t have the same color, by definition of our coloring and

the fact that m and m− 1 have different parity.

The reason this is the case is that otherwise, a + ks <

m−1∑
i=0

i <

m∑
i=0

i ⩽ a + (k + 1)s, so that by taking

differences, s ⩾ m which is impossible.
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9 Hales-Jewettes theorem

The Hales-Jewettes theorem is about colorings of gridpoints of a hypercube and the existence of monochro-
matic lines in it. We explain precisely what we mean by "line", state the theorem and show how it can be
used to prove Van der Waerden’s theorem, which will motivate the interest in the particular type of line
we’re about to define.

We consider the cube Cn
t = [t]n and an r-coloring of its points. We’ll be intereseted in combinato-

rial lines L of the cube, which are made of t points L(i) ∈ Cn
t , such that for all dimensions j, the

sequences (L(i)j)i∈[t] are either constant or strictly increasing, for which case there is only the possibility
L(i)j = i, and such that at least on dimension is of the increasing type (otherwise, we’d get a single point).

Note that this does not cover all lines in the intuitive sense: for dimension n = 2, the diagonal (1, t), (2, t−
1)..., (t, 1) isn’t a combinatorial line.

There is a nice notation for combinatorial lines, which also allows us to count them: we can repre-
sent lines by a vector of ([t] ∪ {∗})n, where the entries in [t] represent values of the constant coordinate
sequence, and ∗ represents a increasing coordinate sequence. For example, line (1, 1), (1, 2), (1, 3) of C2

3

will be represented as (1, ∗). The constraint from the definition is that there must be at least one ∗ in
that vector. So among the (t+1)n words of ([t]∪ {∗})n, the tn that don’t contain a ∗ aren’t lines, so that
there are (t+ 1)n − tn lines.

Hales-Jewettes theorem:

For any t and r, there is a number HJ(t, r) such that for all n ⩾ HJ(t, r), we can find a monochromatic
combinatorial line in any r-coloring of Cn

t .

The Hales-Jewettes theorem actually implies the Van der Waerden theorem. The link between the two
can be made by establishing a correspondence between numbers and gridpoints of a hypercube: the rep-

resentation of numbers in bases. Indeed, we can associate a point x ∈ Cn
t with the number

n∑
i=0

(xi − 1)ti,

where (xi − 1) ∈ {0, .., t− 1}, and vice versa, for numbers in 0, ..., tn − 1. A coloring of one translates to a
coloring of the other.

A combinatorial line with ∗-set S then corresponds to numbers τ

(∑
i∈S

ti

)
+
∑
i/∈S

(xi − 1)ti with range

τ ∈ {0, .., t − 1}, which form an arithmetic progression of length t for a =
∑
i/∈S

(xi − 1)ti and s =
∑
i∈S

ti.

The converse isn’t true, as not all steps s can be represented as a
∑
i∈S

ti for some ∗-set S. Now, finding a

monochromatic line in Cn
t will provide us with a monochromatic progression.

The proof we’ll give is known as Shelah’s proof.
COMPLETE!
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10 Infinite graphs

An infinite graph is a set of vertices V and a set of edges E between them, where these sets many now be
infinite. Since there are multiple kinds of infinity, we distinguish between the countably infinite graphs,
for which V is countable, and the uncountable ones. Note that for the countable ones at least, E can’t be
uncountable, as the neighbourhood of each is countable.

10.1 Coloring

The notion of a (proper) k-coloring extends without problems to infinite graphs.

Since we have a lot of coloring results available for finite graphs, it’s natural to ask if we can deduce
k-colorability of the infinite graphs from that of it’s finite subgraphs. Clearly, if the infinite graph infinite
graph is k-colorable, then so are it’s finite subgraphs, as we can use the same colors for them. The converse
holds for countably infinite graphs:

k-colorability of infinite graphs:

If all finite subgraphs of a countably infinite graph are k-colorable, then the infinite graph is too.

Note that this type of result isn’t really intuitive or systematic. For example, consider the property of
having a leaf, aka. a vertex of degree one. The infinite graph with vertices Z and edges between i, j if
|i− j| = 1 (a line) has all its finite subgraphs satisfying this property, yet it doesn’t satisfy it itself.
Now, our goal is to build such a coloring by listing vertices as vn and coloring them one after the other.
At each stage, we know that the subrgarph induced by the first n+ 1 vertices is k-colorable, but we have
no control on this coloring being the same for the first n vertices as in the previous stage.

To make things more clear, we introduce partial k-colorings Cn, which are k-colorings on the graph
induced by vertices v1, ..., vn. We can extend these definitions by calling partial colorings the colorings on
induced subgraphs and saying that one extends the other if it colors all the others vertices at least, and
with the same colors.
We say that Cn+1 extends Cn if they have the same colors on v1, ..., vn. If we manage to find a sequence
of colorings (Cn)n∈N such that Cn+1 extends Cn for all indices n, then we can consider the coloring
C(vn) = Cn(vn). It’s a k-coloring as C(vn) = Cn(vn) ∈ [k] and or all {vn, vm} ∈ E, C(vn) = Cn(vn) =
Cmax(n,m)(vn) ̸= Cmax(n,m)(vm) = Cm(vm) = C(vm).
So, how do we show that such a sequence of partial colorings extending their predecessors exists ?

Start with vertex v1: which color should we give it ? We know that for all n, there is a partial col-
oring Qn of v1, ..., vn, since our assumption is that all finite subgraphs are k-colorable, but they have
the flaw that the color of v1 may differ from one coloring to the next, so that they don’t extend each
other. However, if we consider the sequence Qn(v1), on of the k possible values this can take must appear
inifinitly often. If we extract the subsequence in which v1 has the same color with φ, we get an infinite
sequence Qφ(n) of partial colorings in which v1 has the same color.
As you might be able to see, we could then perform the same argument on v2 and the sequence of Qφ(n)

and similarly on and on. The point is that when we set C1 to be the partial coloring which colors only v1
with its color in the Qφ(n), we will be able to extend this partial coloring with this type of argument.

The key property of the Cn we’ll build is that there are an infinite number of partial colorings extending
them. This is true for C1, as the infinite sequence Qφ(n) of partial colorings extends it, since v1 has the
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same color in all of them. We can show this for the other Cn by induction, where only the induction
steps remains to be proved. So if Cn has an infinite number of partial colorings extending it, that we
collect in sequence (Km)m, we look at (Km(vn+1))m. One of the k colors must appear infinitely often in
that sequence, and we can extract those colorings in which vn+1 has that color with φ. Then by letting
Cn+1(vn+1) be that color, (Kφ(m))m is a infinite sequence of partial colorings extends it, as the colors on
the first n+1 vertices are the same, by construction for vn+1 and by the inductive assumption for v1, ..., vn.
In particular, Cn+1 will extend Cn, and our strategy works out.
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10.2 More

From the chapter in Diestels book ?
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11 Positional games

11.1 Tic-tac-toe

With high probability, you’ve played tic-tac-toe before, so we won’t explain the rules of the traditional
game to you. It should also come as no surprise to you that every player has a strategy that garagtees
them a draw as outcome. This can be checked by case disjunction. If we considered the game on a
2×2 grid with similar rules, then case disjunction would lead us to show that the first player always wins:
after the first two turns, in all 12 cases the grid can be filled out it, the first player can win in the third turn.

What about a game on an n× n grid ?
The rules are the same, except that the lines one has to fill out are now of length n. An astonishing fact is
that one can prove, without massive case disjunctions, that each player has a strategy to make the game
end in a draw no matter how their opponent plays.

Consider the viewpoint of the second player: how should they prevent the first player from getting any
line filled out ? The least they must do to prevent a line from being filled out, is to get one tile-point on
that line. If we had a set of distinct such tile-points for each line, then the second player could try to fill
them all to guarantee that the first player can’t fill out a line.
However, what if the first player would fill out one fo these points ? Can we fix our idea ?

If we got two points per line, then whenever the first player fill one of them, we can fill the other in
the next turn, thereby preventing the line from being filled out by the first player later on. This is a
strategy from positional game theory known as a pairing startegy.
Does n× n tic-tac-toe have such a set of pairs of points ?

We may not find one for n ⩽ 3, or even 4, but for 5 and 6 we can find some:
Pairing up points by marking them with the same numbers, where we use ∗ for points not needed in the

strategy, for 5, we have

11 1 8 1 12
6 2 2 9 10
3 7 ∗ 9 3
6 7 4 4 10
12 5 8 5 12

, and for 6 we have

13 1 9 10 1 14
7 ∗ 2 2 ∗ 12
3 8 ∗ ∗ 11 3
4 8 ∗ ∗ 8 4
7 ∗ 5 5 ∗ 12
13 6 9 10 6 13

.

To find these in practice, we could have modeled this as an integer program. There are 2n + 2 lines
(n horizontal, n vertical, 2 diagonals), so that we need n+1 indices to label the pairs. We use binary vari-
ables xi,j,m which indicate if tile-point (i, j) ∈ [n]2 has label m where m takes at most n+ 2 (don’t forget
∗). Next, to indicate whether line L has two identically labeled m points on it, we use binary variable
dL,m .We get n2 constraints

∑
m

xi,j,m = 1 (exactly one label per point), and (2n+ 2)(2n+ 5) constraints

∑
(i,j)∈L

xi,j,m ⩽ 2 ,
1

2

 ∑
(i,j)∈L

xi,j,m

 ⩾ dL,m ⩾

 ∑
(i,j)∈L

xi,j,m

 − 1 (for m ̸= ∗) and
∑
m ̸=∗

dL,m ⩾ 1, (and

the binary and integral constraints) to ensure that any feasible point of this polytope is a solution to our
problem.

It turns out that these will be the initial cases for a construction by induction/recursion of a set of
pairs of points for grids of size n. Indeed, given a set of labeled pairs of points for a grid of size n, we can
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find one for a grid of size n+ 2, by filling out the inner grid by induction, and the outer layer as follows:

∗ 1 1 ∗ ∗
∗ ind ... ind 2

4
...

... 2
4 ind ... ind ∗
∗ ∗ 3 3 ∗

Here, the ind are determined by induction. They already cover all lines of the initial grid, except for the
4 that make up the outer layer, which we get as with the labels we presented.

Since the step from n to n + 2 preserves parity, and we have an initial odd pairing for n = 5, and
an initial even one for n = 6, we conclude that such a pairing exists for all n ⩾ 5.

This way the second player can guarantee a draw, whatever the first does. If the first player fills on
of the points from the set, the second fills its paired up point, if it hasn’t been filled by the second player
already, so that the line can’t be filled by the first player. If the first player fills a point not from the set,
the the second player can fill out an arbitrary point, from the set or not. This is how it may potentially
happen that the point has already been filled out we second is in the case where it’s supposed to fill out
that point as the pair has just been filled out. In all cases, either the first player doesn’t fill out any point
on a given line, or the second player has or will fill another point of the line, if red fills it at a point at
some turn, so that the first player can’t completely fill out the line. Thus, in the worst case, the game
ends in a draw for the second player.

What about the perspective of the first player ? The first player can adopt the same strategy as the
second in the third turn, since this strategy dealt with the case of a point of a pair already being filled, as
might be the case for the first player after the first turn.
Another approach is to note that there is always a ∗ for n ⩾ 5, which the first player can fill out, so that
a pairing exists from they’re perspective.

Since both players can guarantee themselves a draw in the worst case, with this straegy, none of them can
win, when they both play with this strategy, so that the game must end in a draw.

We extended the grid-size of tic-tac-toe. What if we extend the dimension ?
We can play tic-tac-toe on a d-dimensional grid of size n. Here, generalizing the winning lines requires
more precision. In 3-dimensional tic-tac-toe, we want the diagonal line obtained by fixing one coordinates,
and letting the other two vary from 1 to n, to be winning sets, for example, though they’re not in a slice
of the grid, nor diagonals of the cubic grid.

The notion of lines we’ll use is that of a sequence of gridpoints a(1), ..., a(n) with the following prop-
erty: for each coordinate j, the sequence a(1)j , ..., a

(n)
j is either a constant one, for constants in [n], or it’s

1, ..., n ("increasing") or n, ..., 1 ("decreasing"). Also, not all coordinate sequences can be constant, as
this would produce the same girdpoint in all the sequence. More specifically, those are oriented lines (the
sequence induces a direction). Some of them will correspond to the same line, such as the lines in which all
but one of the coordinate sequences are constant: the directed lines where the non-constant coordinate se-
quence is increasing and decreasing actually correspond to the same set of gridpoints (in a different order).
In general, two directed lines correspond to the same line if (and only if) their non-constant coordinate
sequences are, when considered side by side for a fixed coordinate, increasing in one and decreasing in the
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other.

First, let’s ask: how many lines are there in a d-dimensional grid of size n ?
To build the directed lines we must chose the c coordinates we want to be constant, where c ranges over
[d− 1], and for each such choice, there are n possible values for the constant. For these choices, there are
the 2 choices (increasing/decreasing) for the other d− c coordinates. So the total number of directed lines

is
d−1∑
c=0

(
d

c

)
nc2d−c, which we can express, using the binomial expansion, as (n+ 2)d − nd. The number of

lines is then half of the latter, as each line corresponds to exactly two directed lines.

As a "fun fact" let’s convince ourselves that these lines are either equal, or meet in at most one point.
Assume two lines A and B where to meet at at least two points a(i) = b(i) and a(j) = b(j). Let’s zoom in
on the coordinates q. If aq was increasing, then b(i)q < b(j)q , so bq must have been increasing, as it can’t
be constant or decreasing, and similarly if aq was decreasing. If aq was constant with value m, then
b(i)q = b(j)q = m, so the only possible type of bq is constant at value m. Therefore, A and B are of same
type on each coordinate, and they must be equal.

Let’s get back to the game now. We’ll try to find a pairing as in the 2-dimensional case, though with more
sophisticated combinatorics. We’ll try to find representatives among the points for the lines, which from
the chapter on Hall’s theorem, should lead us to the following.
We’ll represent the situation as a bipartite graph with bipartition set U representing te lines, where we
include 2 vertices per line, and bipartition set W representing the points, and edges between them if the
point is on the line. The reason we included two vertices per line is that we’ll try to match U into W , so
that a line will be matched to two points in the end, once for each representing vertex.
We’ll try to apply Hall’s theorem, for which we need to verify the Hall condition. We’ll try to get that
condition from double-counting edges and using bounds on them. The bound we’ll need is:

Bound:

The number of lines a point is in upper-bounded by 3d−1
2 .

For each directed line passing through a given point, the coordinate sequences are of three types: increas-
ing, deceasing, or constant with value that point’s coordinate. There are at most 3d such combinations of
coordinate sequences. We discard the one in which all sequences are constant, so that we can upper-bound
the number of directed lines by 3d − 1, and therefore the number of lines, which is half of directed ones,

by
3d − 1

2
. This migth be an over-estimation for a given point. For example, for a point with its two first

coordinate 2 and 1, it can’t be on any lines in which the two first coordinate-sequences are increasing, as
the first coordinate-sequence requires it to be the second point on the line, while the second coordinate-
sequence requires it to be the first point on the line. However, in the case of an odd grid, the center of the

grid truely is in
3d − 1

2
lines, so that this bound is tight.

Back to Hall’s application in our context. To compare the size of line-vertex set S to its neighbour-
hood N(S) of points in those lines, we’ll estimate the edges between them in two ways. First, since each
line contains n points, we know that

∑
L∈S

|δ(L)| = |S|n.
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On the other bipartition set, these edges are counted in
∑

p∈N(S)

|δ(p)|, which may be larger then
∑
L∈S

|δ(L)|,

as it may be that S ⊊ N(N(S)).
∑

p∈N(S)

|δ(p)| can be bounded by recalling that any point is in at most

3d − 1

2
lines, so that

∑
p∈N(S)

|δ(p)| ⩽ |N(S)|3
d − 1

2
. Combining the bounds, we get |S| 2n

3d − 1
⩽ |N(S)|. So

in the case that 1 ⩽
2n

3d − 1
, we get Hall’s condition, and a pairing strategy exists.

High dimesnional tic-tac-toe:

For a d-dimensional grid of size n, with n ⩾
3d − 1

2
, both the first and second player have a

strategy that guarantees them a draw in the worst case, since a pairing startegy exists.
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11.2 Maker-breaker games
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12 Social choice with Boolean analysis

12.1 Social choice

Social choice is the study of how to make take a decision based on opinions of a group of people. In the
simplest case, n voters have to chose between two options 1 and −1, and given their collected opinions in
the form of a vector x of {−1, 1}n, we use a social choice function f : {−1, 1}n → {−1, 1} to determine
which option f(x) will be taken as a community.

We start by listing some examples:

Some social choice functions:

• The two majority functions Maj±(x) = sign±

∑
i∈[n]

xi

, one per choice of sign, where we handle

ties with arbitration, in the sense that sign±(y) =


1, y > 0

−1, y < 0

±1, y = 0

.

• The weighted majority functions Maj±,c(x) = sign±

c0 + ∑
i∈[n]

cixi

 which depend on a weight

vector c. Note that c0 introduces the possibility of a bias.

• The k-junta functions JI(x) = g(xI) for some I ⊆ [n] and some g : {−1, 1}|I| → {−1, 1}.

• In particular, the ith dictator function di(x) = xi.

• We can define andn(x) =

{
−1, x = (−1, ...,−1)

1, else
and orn(x) =

{
1, x = (1, ..., 1)

−1, else
= andn(−x)

to obtain the family of tribe functions τ(Ti)(x) = ort(and|T1|(xT1), ..., and|Tt|(xTt)), where the (Ti)
partition [n] into t "tribes". Here, option −1 is chosen when there is a tribe in which all members
desire −1, otherwise option 1 is the default.

We can describe properties for these functions:

Some properties for social choice functions:

• A social choice function f is symmetric if for all permuation matrices Mπ (π is a permutation of
[n]), we have f(Mπx) = f(x). So the ordering of voters doesn’t affect the choice.

• A social choice function f is monotone if for any x ⩽ y (coordinate-wise), f(x) ⩽ f(y).
So if some voters change their vote from ±1 to ∓1, where all voters that changed their minds voted
and vote the same, then the result of the social choice is in their favour, in the sense that it can’t go
to ±1, having previously been at ∓1.
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• A social choice function f is unanimous if f(±1, ...,±1) = ±1.
So if all voters agree, the social choice is the unanimous one.

• A social choice function f is transitive-symmetric if for all voters i, j, there is a permutation π
such that π(i) = j and f(Mπx) = f(x) for all x ∈ {−1, 1}n. This means that if voters i took j’s
rank, there would be a way of reordering th rest of voters so as to get the same social decision, in
any voting scenario.

For example, the majority functions have all these properties, since
∑
i∈[n]

xi is invariant under permutation,

sign± is increasing and so is
∑
i∈[n]

xi under the partial coordinate order, and Maj±(±1, ...,±1) = ±1.

Transitive-symmetry and symmetry are not the same. A function that’s symmetric will also be tran-
sitive symmetric, as any permutation does the job. The converse is however false. The tribe functions
are a good example. They’re not symmetric, as permuting two voters of different tribes leads to different
results if one of these tribes (where voters where permuted) voted −1 uninimously, while all other tribes
voted 1 unanimously. However, they’re transitive-symmetric, as we can simply permute the rest of the
two tribes, so as to essentially end up with the same tribes, but reordered, so that results are the same,
by symmetry of ort.

We can also measure numerical quantities about social choice functions. For example, for such an f ,
we can measure the impact that voter i has by considering the ratio of how often a change in vote of i
results in a change in social decision over all choices of other voters, to the number of all possible scenarios
for other voters. This is:

Influence:

The influence/impact of voter i is

Imp(f, i) = PX∼U({−1,1}n)(f(X1, ..., 1i, ..., Xn) ̸= f(X1, ...,−1i, ..., Xn))

.

The total influence of f is I(f) =
∑
i∈[n]

Imp(f, i).

We can then ask to find a social choice function maximising total influence, under constraints on this
functions, such as it being monotonous and unanimous, for example.

Finally, we’ll discuss an approach of dealing with social choice between more then two options.
In the Condorcet method to determine an option among k of them, we compare options pair-wise, by
using social choice function f to determine which option is preferred in a pair, for each pair.

We can then picture the situation with a digraph in which options are represented by node, and we
draw an arc from on to the other if in the pair-comparison-vote, voters preferred the tail of the arc to its
head. The graph obtained this way is a tournament. It may actually have cycles, corresponding to people
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preferring an option a to b, b to c, but then also c to a. This is the case in the following example, where
3 voters vi choose between 3 options, and we use the Condorcet method with a majority function:

v1 v2 v3 result
a (1) vs. b (−1) : 1 1 −1 a > b
b (1) vs. c (−1) : 1 −1 1 b > c
c (1) vs. a (−1) : −1 1 1 c > a

This is actually a coherent scenario. If v1 has preferences a > b > c, v2 has preferences c > a > b, and v3
has preferences b > c > a, then these are the votes we can expect to see.

A Condorcet winner is an option that is a source of the digraph, aka. an option that won all de-
cisions between it and the other pairs. If it exists, it’s unique (tow would have to beat each other), but
as we’ve seen from the previous example, a Condorcet winner may not exist. This outcome did a priori
depend on the social choice function used in the "matches".
We may then ask, what are the social choice functions for which a Condorcet winner always exists, for all
x ∈ {−1, 1}n ? This is what Arrow(-Kalai)’s theorem will be about.

We will soon discuss Boolean analysis, which investigates mimicking real analysis on Boolean functions,
which is essentially what social choice functions are. The link to social choice theory is for example one
like the following.
We can consider a discrete partial derivative of a Boolean function with ∂if : {−1, 1}n → {−1, 1} where

∂if(x) =
f(x1, ..., 1i, ..., xn)− f(x1, ...,−1i, ..., xn)

2
. Its square (∂if(x))

2 takes value 0 when a change in i
doesn’t affect the outcome, and value 1 if it does.
This allows us to rewrite Imp(f, i) = EX∼U({−1,1}n)

(
(∂if(X))2

)
. So the study of ∂if will lead to results

about influence.
Many more such connections will arise. For now, we start by studying Boolean analysis, in which we try
mimicking real analysis on Boolean functions.
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12.2 Boolean analysis

We start our study of Boolean functions by introducing the multilinear expansion or Fourier expan-
sion of a Boolean function. Its second name gives away the fact that we’ll use it to do stuff resembling
Fourier analysis.
This expansion expresses the a Boolean function f as a (real) linear combination of monomials xS =

∏
i∈S

xi

for S ⊆ [n]. Does this expression even exist ? Is it unique ?

Existence can be shown from a slightly different consideration: can we express the indicator functions
of singletons {a} for a ∈ {−1, 1}n as such polynomials ?
If we can, then since f(x) =

∑
a∈{−1,1}n

f(a)χ{a}(x), and the polynomials with monomials of multidegree

at most (1, ..., 1) form a vectors space, so that linear combinations of them result in the same type of
polynomials, we can express any f as such a polynomial.

We can express χ{a}(x) as such a polynomial: χ{a}(x) =
∏
i∈[n]

(
1 + aixi

2

)
, since

(
1 + aixi

2

)
= 1 if xi = ai

and
(
1 + aixi

2

)
= 0 if xi ̸= ai since we deal with values ±1.

Uniqueness will bring us closer to analysis. The journey starts in probabilistic considerations, which
we’ve seen to show up in social choice considerations. If we pick a hypercube point X uniformly at ran-
dom, so that X ∼ U ({−1, 1}n), we can study the random value of the function f(X). For two such
Boolean functions f and g, we now that E(f(X)g(X)), which shows up in the covariance of f(X) and
g(X), can be interpreted as a dot-product of f(X) and g(X).
By considering Boolean functions {−1, 1}n → R as a vector space, we can use this as inspiration to define

the dot-product ⟨f, g⟩ = 1

2n

∑
x∈{−1,1}n

f(x)g(x) on this space. This can also be derived from interpreting

Boolean functions as vectors from R({−1,1}n).

The slightly surprising thing, which justifies the Fourier name, is that the family of monomials xS is
orthonormal for this dot-product. Indeed, xSxF =

∏
i∈S

xi
∏
i∈F

xi =
∏

i∈S\F

xi
∏

i∈S∩F
x2i

∏
i∈F\S

xi and since

Boolean functions take values in {−1, 1}, we get xSxF =
∏

i∈S\F

xi
∏

i∈F\S

xi. Now, unless S\F and F\S are

empty, aka. unless S = F , we can fix an element j in one of them, and partition {−1, 1}n in half according
to the value of the jth coordinate: for each a ∈ {−1, 1}n, there is an a′ ∈ {−1, 1}n that differs only in he

jth coordinate, so that this pair of terms cancels each other out in the sum
1

2n

∑
x∈{−1,1}n

xSxF , since the

monomials will differ in sign, as they contain xj . So unless S = F , ⟨xS , xF ⟩ = 0. Now, computing ⟨xS , xS⟩
resulting in

1

2n

∑
x∈{−1,1}n

1 = 1 for all S ̸= ∅, since xSxS =
∏
i∈S

x2i = 1 in that case, and by adopting the

convention that
∏
i∈∅

= 1, this holds for any S ⊆ [n].

The probabilisitic view can speed up the proof of orthonormality.

We compute EX∼U({−1,1}n)
(
XSXF

)
= E

 ∏
i∈S\F

Xi

∏
i∈F\S

Xi

 by using independence of coordinates for
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X ∼ U ({−1, 1}n), so that EX∼U({−1,1}n)
(
XSXF

)
=
∏

i∈S\F

E(Xi)
∏

i∈F\S

E(Xi). Since E(Xi) =
1

2
− 1

2
= 0,

this expectatio is 0 unless the product is empty, in which case its E(1) = 1.

Now if f could be written in two ways as a expansion, say
∑
S⊆[n]

cSx
S and

∑
S⊆[n]

c′Sx
S , we could take

the dot-product with some xF on both expressions to conclude that cF = c′F . This allows us to conclude
with uniqueness.

Fourier expansion:

The Fourier expansion of a Boolean function exists and is unique.

The coefficients of the expansion are indexed by S ⊆ [n] and could therefore be considered as Boolean func-

tions. Indeed, we can represent Boolean function with the notation f(S) = f

({1, i ∈ S

−1, i /∈ S

)
i∈[n]

.

The problem is that they’re not necessarily ±1 valued, as the following example shows: as you can check

by building it as we explained, in dimension 2, Maj+(x) =
1

2
(1 + x1 + x2 − x1x2).

We will still use function like notation for the Fourier coefficients of the expansion, calling them f̂(S) = cS .
Also the notation suggest, they will have similar properties to the Fourier transform of a function. Just
note that f̂ isn’t a Boolean function, as it may not be ±1 valued.

Let’s collect some definitions we’ve seen to be useful:

Definitions:

Boolean functions have unique Fourier expansions f(x) =
∑
S⊆[n]

f̂(S)xS , where xS =
∏
i∈S

xi.

We call f̂ the Fourier coefficient function of f .
We have dot-product ⟨f, g⟩ = EX∼U({−1,1}n)(f(X)g(X)) and norms ∥f∥p = p

√
EX∼U({−1,1}n) (|f(X)|p).

Let’s see how far the analogy to Fourier analysis goes.

Some consequences of orthonormality are ⟨f, xS⟩ = f̂(S), Plancharel’s identity ⟨f, g⟩ =
∑
S⊆[n]

f̂(S)ĝ(S),

and Parseval’s identity ⟨f, f⟩ =
∑
S⊆[n]

f̂(S)2, which for Boolean f implies
∑
S⊆[n]

f̂(S)2 = E
(
f(X)2

)
=

E(1) = 1.

We take a brief moment to discuss the probabilistic view.
We have E(f) = ⟨f, 1⟩ = f̂(∅) and V ar(f(X)) = ⟨f, f⟩ − E(f)2 =

∑
∅≠S⊆[n]

f̂(S)2.

For Boolean functions, variance has an interesting alternative expression: with E(f) = P (f(X) =
1)− P (f(X) = −1), ⟨f, f⟩ = 1 = P (f(X) = 1) + P (f(X) = −1) and identity a2 − b2 = (a+ b)(a− b), we
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get V ar(f(X)) = 4P (f(X) = 1)P (f(X) = −1).
We can also consider Cov(f(X), g(X)) = ⟨f, g⟩ − E(f)E(g) =

∑
∅≠S⊆[n]

f̂(S)ĝ(S).

What about expectations over other probability distributions ?
We’ll base our approach on relative densities, so as to keep uniform density close. To get a probability
distribution over {−1, 1}n, we can take any ϕ : {−1, 1}n → R+ that satisfies E(ϕ(X)) = 1, and have use

Y ∼ ϕ to denote that Y has probability distribution P (Y = y) =
ϕ(y)

2n
. Any probability distribution on

{−1, 1}n can be expressed this way, by defining ϕ(y) = 2nP (Y = y).

If we then seek to compute EY∼ϕ(g(Y )), we have identity EY∼ϕ(g(Y )) =
1

2n

∑
y∈{−1,1}n

ϕ(y)g(y) = ⟨ϕ, g⟩.

The Fourier analysis analogy would be incomplete without convolutions, so let’s define them here. Had
we considered Boolean functions with domain the vectors of F2, we would have been tempted to define
f ⋆ g(x) = Ey∼U(Fn2 )

(f(y)g(x − y)). We can still do something similar over the Hamming cube {−1, 1}n

by noting that by associating 0F2 ≈ 1 and 1F2 ≈ −1, we have xF2 − yF2 ≈ x ◦ y, where ◦ is some-
times called the Hadamar product, which is coordinate-wise multiplication. So our convolutions will be
f ⋆ g(x) = E(f(Y )g(x ◦ Y )).

We can check some of their properties. For example (f ⋆ g)(x) = (g ⋆ f)(x), since y 7→ x ◦ y is a bijection
(x ◦ (y − z) = 0 ⇒ y = z and y = x ◦ (x ◦ y)), we may change variables in the sum

∑
y∈{−1,1}n

f(y)g(x ◦ y) =

∑
z∈{−1,1}n

f(x ◦ z)g

x ◦ (x ◦ z)︸ ︷︷ ︸
z

. There’s also associativity to show, but we’ll just take it for granted.

Probability densities have a nice property in this context. If Y ∼ ϕ and Z ∼ ψ are independent, then

Y ◦ Z ∼ ϕ ⋆ ψ, which is the essence of convolutions. We have to show that P (Y ◦ Z = x) =
(ϕ ⋆ ψ)(x)

2n

to get this result, aka. P (Y ◦ Z = x) =
1

2n

 1

2n

∑
t∈{−1,1}n

ϕ(t)ψ(x ◦ t)

. First, we split P (Y ◦ Z = x) =∑
t∈{−1,1}n

P (Y = t)P (Y ◦ Z = x|Y = t), where P (Y ◦ Z = x|Y = t) = P (t ◦ Z = x|Y = t) and P (t ◦ Z =

x|Y = t) = P (Z = t ◦ x|Y = t) = P (Z = t ◦ x) with the bijection (idempotence) of ◦ in this context, and

independence. So in the end P (Y ◦Z = x) =
∑

t∈{−1,1}n
P (Y = t)P (Z = t◦x) = 1

2n
1

2n

∑
t∈{−1,1}n

ϕ(t)ψ(x◦ t),

as desired.

Finally, we show the most important property that makes the Fourier analysis analogy complete: (̂f ⋆ g)(S) =
f̂(S)ĝ(S). To see it, we use Fourier expansions and binlinearity of convolution to get f ⋆ g(x) =∑
S,F⊆[n]

f̂(S)ĝ(F )E
(
Y S(x ◦ Y )F

)
. Next, we have (x ◦ Y )F = xFY F (unpack the definitions), so that,

recognizing the dot-product along the way f ⋆ g(x) =
∑

S,F⊆[n]

f̂(S)ĝ(F )xF ⟨xS , xF ⟩, so that orthonormal-

ity implies f ⋆ g(x) =
∑
F⊆[n]

f̂(F )ĝ(F )xF . By uniqueness of the Fourier expansion, we conclude that

(̂f ⋆ g)(S) = f̂(S)ĝ(S).
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Again, let’s collect the properties we just proved:

Fourier-ish porperties:

COMPLETE

We can also introduce other notions of distance between Boolean functions:

Relative Hamming distance:

The relative Hamming distance of f and g is dist(f, g) = P (f(X) ̸= g(X)).

We already mentioned the derivative ∂if(x) =
1

2
(f(x1, ..., 1i, ..., xn)− f(x1, ...,−1i, ..., xn)).

It has similar properties to the real derivative. For example, f is monotone precisely when ∂if(x) ⩾
0 for all i and x. Indeed, if f is monotone, since (x1, ..., 1i, ..., xn) > (x1, ...,−1i, ..., xn), we have
f(x1, ..., 1i, ..., xn) ⩾ f(x1, ...,−1i, ..., xn) and thereofore ∂if(x) ⩾ 0. For the converse, take x > y and
choose an order on the indices where they differ, say x and y differ on i1, ..., ik. We can use intermediates
z(q) where z(0) = y and z(q+1) differs from z(q) on iq+1, so that y = z(0) < z(1) < ... < z(k) = x. We

then use the fact that ∂iqf
(
z(q)
)
⩾ 0 and compute the telescopic sum

k∑
q=1

∂iqf
(
z(q)
)
⩾ 0 to find that

f(x) ⩾ f(y).

Another similarity to Fourier analysis is the interaction between derivative and Frourier expansions.
First, let’s express the Fourier expansion of ∂if(x) as follows. Since ∂i is linear, we can expand f

and compute ∂ix
S . Now, ∂ixS =

1

2

 ∏
j∈S,xi=1

xj −
∏

j∈S,xi=−1

xj

 =

{
0, i /∈ S

xS\i, i ∈ S
, so that ∂if(x) =

∑
S⊆[n]:i∈S

f̂(S)xS\i =
∑

F⊆[n]\i

f̂(F ∪ i)xF . Therefore, ∂̂if(S) =

{
0, i ∈ S

f̂(S ∪ i), i /∈ S
.
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12.3 The theorems

Questions in social choice theory are typically formulated as finding all social choice functions satisfying
a certain criterion. In a first example, we’ll ask which functions maximise the expected number of voters
which voted for the decision taken.

The first task is to express the quantity we want to maximise.
How do we indicate if i voted to the final decision ?
This happens when xi and f(x) have the same value, which is equivalent to f(x)xi = 1. This is not

yet an indicator, as it takes value −1 when the choices disagree. We’ll still look at f(x)
n∑

i=1

xi, which is

the the number of voters that voted for the decision, minus that of voters that voted against it. If w
denotes the first number, then the quantity we which to maximise is E(w). We can the use then express

f(x)

n∑
i=1

xi = w − (n− w) to get E(w) =
1

2

(
n+ E

(
f(x)

n∑
i=1

xi

))
.

So the problem is equivalent to maximising E

(
f(x)

n∑
i=1

xi

)
. Can you bound the latter ?

With the absolute value, we have E

(
f(x)

n∑
i=1

xi

)
⩽ E

(∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
)

, where

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣is also the number of vot-

ers that voted for the decision, minus that of voters that voted against it. We have

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ = (+1)
n∑

i=1

xi

if
n∑

i=1

xi ⩾ 0, so if the number of voters that voted 1 is ⩾ then that who voted −1 and similarly if∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ = (−1)

n∑
i=1

xi. This is precisely f(x)
n∑

i=1

xi when f is a majority function.

So the majority functions maximise E(w).

A perhaps more surprising result is obtained by seeking to maximise the stability of a election proce-
dure. First, we’ll explain what one could understand under the notion of stability.
Assume the votes are mis-recorded as follows: for all i, independently with probability p ∈]0, 1[, the correct
vote yi = xi is recorded, but with probability 1− p, the a random vote is recorded, which may be yi = 1

or yi = −1, both with probability
1

2
.This isn’t a framework that models real-life mis-recording of votes, as

there is usually a bias, so that yi would depend on xi’s value. We’ll stick to this model for its simplicity.
We’d like to know how such a perturbation affects the outcome of the vote on average, in the sense that
we want to compute P (f(x) = f(y)). How do we proceed ?

In a first reformulation, we’ll make expectations appear, as they have dot-product properties. we can work
with. Note that the product f(x)f(y) is 1 if f(x) = f(y) and −1 otherwise. So E(f(x)f(y)) = P (f(x) =
f(y))−P (f(x) ̸= f(y)), and using that the sum of them is 1, we get E(f(x)f(y)) = 2P (f(x) = f(y))− 1.
So since E(f(x)f(y)) is proportional to P (f(x) = f(y)) and we expect it to be easier to work with, we
define this to be the stability Stab(f, p) = E(f(x)f(y)).

In the sum E(f(x)f(y)), grouping the terms for a fixed x, we can factor f(x) out in these terms, leaving us
with E(f(y)|x), so that E(f(x)f(y)) = E(f(x)E(f(y)|x)). Using the Fourier expansion of f and linearity
of expectation, we can get a better picture of E(f(y)|x) by computing E

(
yS |x

)
for S ⊆ [n]. We can then

use Independence of the yi among each other to get E
(
yS |x

)
=
∏
i∈S

E(yi|x). Next, we have E(yi|x) =
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pxi + (1 − p)

(
1

2
− 1

2

)
= pxi, so that E

(
yS |x

)
= p|S|xS . In conclusion E(f(y)|x) =

∑
S⊆[n]

p|S|f̂(S)xS , so

that by on more Fourier expansion and orthogonality, E(f(x)f(y)) =
∑
S⊆[n]

p|S|f̂(S)2.

When is stability maximised by a Boolean function ?

We have a surprising result:

Stability maximisation:

The stability Stab(f, p) = E(f(x)f(y)) is uniquely maximised over all unbiased Boolean func-
tion, unbiased in the sense that E(f(x)) = 0, by the linear functions, and in particular the dictator
functions.

Unbiasedness means that for uniformly random votes, the probabilities of the decisions are equal, P (f(x) =
1) = P (f(x) = −1).
Proof: Recall that E(f(x)) = f̂(∅), since E(f(x)) = E(f(x).1) = E

(
f(x)x∅

)
.

A bound on
∑
S⊆[n]

p|S|f̂(S)2 is obtained by using unbiasedness to get
∑
S⊆[n]

p|S|f̂(S)2 =
∑

∅≠S⊆[n]

p|S|f̂(S)2,

followed by the use of p > p|S| on ]0, 1[ with |S| > 1 and 1 =
∑
S⊆[n]

f̂(S)2 =
∑

∅̸=S⊆[n]

f̂(S)2 to get∑
S⊆[n]

p|S|f̂(S)2 ⩽ p, where equality holds precisely if f̂(S) = 0 for all |S| > 1. The latter case are

the linear functions.

Technically, only the dictator functions are candidates, as they are the only linear functions that are
±1 valued on the cube {−1, 1}n. Visual intuition for this is that we’re asking for hyperplanes passing the
origin that have distance 1 to all vertices of the cube.

We computed the Fourier expansion of the majority function on 3 voters, and see now that it isn’t as
stable as the dictator function. This may seem counter-intuitive: it’s unlikely that a lot of votes were
changed in the perturbation, and the majority will hardly be affected, while the perturbation of the dic-
tator’s vote will affect the decision. A way of explaining this intuitively is that we took an average over

voting profiles, and not all percentages are equally likely. Indeed, to get 50%, we have
(
n

n/2

)
possibilities,

which is a lot more then the about
(
n

n/3

)
to get 33%. Yet, the 50% case is impacted a lot more by

perturbations, as perturbations of a single voter changes the majoritary decision.

COMPLETE: Arrow’s theorem with the Kalai proof.
Orient cycle on a, b, c so that 1 corresponds to correct direction. NAE then means coherence of a voter, as
it prohibits cycles. Dependence of vars: if x is fixed, there are 2 cases out of 6 in which x and y are equal (it

fixes z) and 4/6 in which they aren’t (z is free). Now, 2/6 = 1/3 =
1

2
+

1

2

(
−1

3

)
and 4/6 =

1

2
− 1

2

(
−1

3

)
,

so that we’re in the stability context with p = −1

3
, or at least the reformulation with yi = ±xi with proba

1

2
± 1

2

(
−1

3

)
.
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